DeepSeek R1 训练策略4个阶段解析

DeepSeek R1 训练策略解析

  • [DeepSeek R1 训练策略解析](#DeepSeek R1 训练策略解析)
    • [1. 冷启动监督微调(Cold Start SFT)](#1. 冷启动监督微调(Cold Start SFT))
    • [2. 面向推理的强化学习(RL for Reasoning)](#2. 面向推理的强化学习(RL for Reasoning))
    • [3. 拒绝采样和监督微调(Rejection Sampling & SFT)](#3. 拒绝采样和监督微调(Rejection Sampling & SFT))
    • [4. 面向全部场景的强化学习(RL for All Scenarios)](#4. 面向全部场景的强化学习(RL for All Scenarios))
    • [**总结:DeepSeek R1 训练策略的价值**](#总结:DeepSeek R1 训练策略的价值)

DeepSeek R1 训练策略解析

DeepSeek R1 采用了一套完整的训练流程,以确保其在推理、生成、对齐等多个方面的能力达到最优水平。整个训练过程可以划分为以下 4 个关键阶段

1. 冷启动监督微调(Cold Start SFT)

在强化学习(RL)训练之前,首先进行 监督微调(SFT) ,使用高质量的 长链式思维(Chain-of-Thought, CoT) 数据对模型进行初始训练。

该阶段的主要目标

  • 建立基本推理能力:确保模型能够进行连贯的逻辑推理,而不是简单的模式匹配。
  • 提高语言表达的连贯性:保证回答逻辑清晰,减少语法错误。
  • 避免强化学习前的模式崩溃:如果直接进行 RL 训练,可能导致模型收敛到次优解,而 SFT 提供了稳定的起点。

2. 面向推理的强化学习(RL for Reasoning)

在冷启动微调之后,模型已经具备一定的推理能力,此时采用强化学习方法进一步优化 长链推理(Long-Chain Reasoning),以提升逻辑严谨性。

该阶段的主要目标

  • 强化多步推理能力:避免模型在长链任务中犯错,提高数学、编程、逻辑等任务的准确性。
  • 减少错误推理(Hallucination):利用奖励建模(Reward Modeling, RM)来优化合理的推理路径。
  • 提升答案稳定性:使模型在相同问题下能够保持一致的回答,减少随机性。

3. 拒绝采样和监督微调(Rejection Sampling & SFT)

在推理导向的强化学习收敛后,采用 拒绝采样(Rejection Sampling) 机制,筛选出高质量的回答,并构建新的 监督微调数据集

该阶段的主要目标

  • 提升数据质量:通过从 RL 训练的模型中采样,过滤掉低质量答案,使模型学习更优的答案结构。
  • 增强多领域能力:补充写作、对话、角色扮演等任务,使模型不仅擅长推理,也能完成更广泛的任务。
  • 避免 RL 过拟合问题:强化学习可能会导致模型在某些任务上过拟合,而 SFT 结合高质量数据可保持模型的通用性。

4. 面向全部场景的强化学习(RL for All Scenarios)

在多领域数据增强后,进行最后一轮强化学习,使模型在所有任务上都符合人类偏好

该阶段的主要目标

  • 提升泛化能力:确保模型不仅能推理,还能写作、对话,适用于多种应用场景。
  • 减少极端情况下的失效:确保模型在复杂问题上不会产生错误或无意义回答。
  • 优化用户体验:让模型回答更符合人类的语言习惯,提高对话流畅度和自然性。

总结:DeepSeek R1 训练策略的价值

训练步骤 主要优化方向 关键好处
冷启动监督微调(SFT) 基础推理能力、语言连贯性 避免直接 RL 导致的模式崩溃,确保模型能进行基本推理
面向推理的强化学习(RL) 长链式推理、逻辑严谨性 让模型学会更合理的推理方式,提高回答的正确性和稳定性
拒绝采样 + SFT 多任务能力、多领域适应性 结合 RL 的最佳回答进行新的监督微调,使模型更通用
面向全场景的强化学习(RL) 真实世界泛化能力、人类偏好对齐 让模型不仅能推理,还能安全、礼貌、高质量地完成各种任务

通过这 四个训练阶段 ,DeepSeek R1 实现了推理能力的优化、多任务能力的增强,并最终与人类偏好对齐,确保其在各种实际应用场景中的表现优异。

相关推荐
格林威21 分钟前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现道路汽车的检测识别(C#代码,UI界面版)
人工智能·深度学习·数码相机·yolo·视觉检测
欧阳小猜32 分钟前
机器学习②【字典特征提取、文本特征处理(TF-IDF)、数据标准化与归一化、特征降维】
人工智能·机器学习·tf-idf
电商数据girl39 分钟前
如何利用API接口与网页爬虫协同进行电商平台商品数据采集?
大数据·开发语言·人工智能·python·django·json
Monkey的自我迭代1 小时前
逻辑回归参数调优实战指南
python·机器学习·逻辑回归·数据处理·下采样·过采样
8Qi81 小时前
深度学习(鱼书)day08--误差反向传播(后三节)
人工智能·python·深度学习·神经网络
wow_DG1 小时前
【PyTorch✨】01 初识PyTorch
人工智能·pytorch·python
海绵波波1072 小时前
解读LISA:通过大型语言模型实现推理分割
人工智能·语言模型·自然语言处理
昨日之日20062 小时前
FLUX.1 Kontext Dev V2版 - 消费级显卡(6G显存)畅玩的AI修图神器 支持批量 支持多图融合编辑 支持50系显卡 一键整合包下载
人工智能
海森大数据2 小时前
神经网络“开窍”时刻:从死记位置到理解意义的语言奇点
人工智能·深度学习·神经网络
贾全2 小时前
Transformer架构全解析:搭建AI的“神经网络大厦“
人工智能·神经网络·ai·语言模型·自然语言处理·架构·transformer