LLM论文笔记 23: Meta Reasoning for Large Language Models

  • Arxiv日期:2024.6.17
  • 机构:THU / MSRA

关键词

  • meta-reasoning
  • 推理方法
  • prompt engineering

核心结论

  1. 提出**Meta Reasoning prompting,**MRP是一种系统提示方法,能够帮助LLM动态选择最合适的推理方法,从而提升其灵活性和效果

  2. 多个基准测试MRP表现出色,特别是在需要多种推理策略的任务中

  3. MRP在更大的模型(如GPT-4)上表现得更为出色,而在较小的模型(如GPT-3.5)上则效果较差,表明推理能力与模型的基础能力密切相关

  4. MRP在更复杂和多样化的任务中显示出了显著的优势,尤其在较简单的任务中与其他方法的表现差异较小时,MRP的优势不明显

  5. 未来可以探讨将MRP集成到训练数据中,从而进一步提高LLM的推理能力

主要方法

提出结合所有推理方法的系统提示方法,模拟人类选择方法的过程(meta-reasoning)

通过自我评分,得到分数最高的推理方法执行:

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
心无旁骛~1 小时前
Masquerade 总结笔记:解锁野外人类视频的机器人政策学习潜力
笔记·机器人
m0_650108241 小时前
多模态大模型 VS. 图像视频生成模型浅析
人工智能·技术边界与协同·mllm与生成模型·技术浅谈
ai_xiaogui1 小时前
Mac苹果版Krita AI一键安装教程:AIStarter+ComfyUI零基础部署全流程(X86/ARM双架构)
arm开发·人工智能·macos·comfyui·一键部署·ai绘画教程·kritaai
lapiii3581 小时前
[智能体设计模式] 第11章:目标设定与监控模式
人工智能·设计模式
这张生成的图像能检测吗1 小时前
(论文速读)WFF-Net:用于表面缺陷检测的可训练权重特征融合卷积神经网络
人工智能·深度学习·神经网络·缺陷检测·图像分割
shayudiandian2 小时前
RNN与LSTM详解:AI是如何“记住”信息的?
人工智能·rnn·lstm
美人鱼战士爱学习2 小时前
2025 Large language models for intelligent RDF knowledge graph construction
人工智能·语言模型·知识图谱
jz_ddk2 小时前
[算法] 算法PK:LMS与RLS的对比研究
人工智能·神经网络·算法·信号处理·lms·rls·自适应滤波
qinyia2 小时前
使用Wisdom SSH的AI多会话功能进行批量命令执行和跨服务器智能运维
运维·人工智能·ssh
jay神2 小时前
【原创】基于YOLO模型的手势识别系统
深度学习·yolo·计算机·毕业设计·软件设计与开发