LLM论文笔记 23: Meta Reasoning for Large Language Models

  • Arxiv日期:2024.6.17
  • 机构:THU / MSRA

关键词

  • meta-reasoning
  • 推理方法
  • prompt engineering

核心结论

  1. 提出**Meta Reasoning prompting,**MRP是一种系统提示方法,能够帮助LLM动态选择最合适的推理方法,从而提升其灵活性和效果

  2. 多个基准测试MRP表现出色,特别是在需要多种推理策略的任务中

  3. MRP在更大的模型(如GPT-4)上表现得更为出色,而在较小的模型(如GPT-3.5)上则效果较差,表明推理能力与模型的基础能力密切相关

  4. MRP在更复杂和多样化的任务中显示出了显著的优势,尤其在较简单的任务中与其他方法的表现差异较小时,MRP的优势不明显

  5. 未来可以探讨将MRP集成到训练数据中,从而进一步提高LLM的推理能力

主要方法

提出结合所有推理方法的系统提示方法,模拟人类选择方法的过程(meta-reasoning)

通过自我评分,得到分数最高的推理方法执行:

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
zm-v-1593043398616 分钟前
ArcGIS 水文分析升级:基于深度学习的流域洪水演进过程模拟
人工智能·深度学习·arcgis
KoiHeng1 小时前
操作系统简要知识
linux·笔记
拓端研究室1 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
灵智工坊LingzhiAI1 小时前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python
昨日之日20061 小时前
Video Background Remover V3版 - AI视频一键抠像/视频换背景 支持50系显卡 一键整合包下载
人工智能·音视频
SHIPKING3932 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
巴伦是只猫2 小时前
【机器学习笔记Ⅰ】11 多项式回归
笔记·机器学习·回归
DKPT6 小时前
Java桥接模式实现方式与测试方法
java·笔记·学习·设计模式·桥接模式
子燕若水6 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室7 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能