LLM论文笔记 23: Meta Reasoning for Large Language Models

  • Arxiv日期:2024.6.17
  • 机构:THU / MSRA

关键词

  • meta-reasoning
  • 推理方法
  • prompt engineering

核心结论

  1. 提出**Meta Reasoning prompting,**MRP是一种系统提示方法,能够帮助LLM动态选择最合适的推理方法,从而提升其灵活性和效果

  2. 多个基准测试MRP表现出色,特别是在需要多种推理策略的任务中

  3. MRP在更大的模型(如GPT-4)上表现得更为出色,而在较小的模型(如GPT-3.5)上则效果较差,表明推理能力与模型的基础能力密切相关

  4. MRP在更复杂和多样化的任务中显示出了显著的优势,尤其在较简单的任务中与其他方法的表现差异较小时,MRP的优势不明显

  5. 未来可以探讨将MRP集成到训练数据中,从而进一步提高LLM的推理能力

主要方法

提出结合所有推理方法的系统提示方法,模拟人类选择方法的过程(meta-reasoning)

通过自我评分,得到分数最高的推理方法执行:

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
Shawn_Shawn6 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
冷雨夜中漫步8 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
技术路上的探险家8 小时前
8 卡 V100 服务器:基于 vLLM 的 Qwen 大模型高效部署实战
运维·服务器·语言模型
33三 三like8 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a8 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者9 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗9 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
yLDeveloper9 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_10 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习