LLM论文笔记 23: Meta Reasoning for Large Language Models

  • Arxiv日期:2024.6.17
  • 机构:THU / MSRA

关键词

  • meta-reasoning
  • 推理方法
  • prompt engineering

核心结论

  1. 提出**Meta Reasoning prompting,**MRP是一种系统提示方法,能够帮助LLM动态选择最合适的推理方法,从而提升其灵活性和效果

  2. 多个基准测试MRP表现出色,特别是在需要多种推理策略的任务中

  3. MRP在更大的模型(如GPT-4)上表现得更为出色,而在较小的模型(如GPT-3.5)上则效果较差,表明推理能力与模型的基础能力密切相关

  4. MRP在更复杂和多样化的任务中显示出了显著的优势,尤其在较简单的任务中与其他方法的表现差异较小时,MRP的优势不明显

  5. 未来可以探讨将MRP集成到训练数据中,从而进一步提高LLM的推理能力

主要方法

提出结合所有推理方法的系统提示方法,模拟人类选择方法的过程(meta-reasoning)

通过自我评分,得到分数最高的推理方法执行:

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
李昊翔的博客1 分钟前
大模型正在反向收割互联网红利
人工智能
学步_技术4 分钟前
多模态学习—Multimodal image synthesis and editing: A survey and taxonomy
人工智能·深度学习·计算机视觉
工程师老罗6 分钟前
Pytorch模型GPU训练
人工智能·pytorch·深度学习
GatiArt雷8 分钟前
基于Torch-Pruning的ResNet模型轻量化剪枝实战——解决边缘设备部署痛点
人工智能·深度学习·计算机视觉
海绵宝宝de派小星9 分钟前
传统NLP vs 深度学习NLP
人工智能·深度学习·ai·自然语言处理
拓端研究室15 分钟前
中国AI+营销趋势洞察报告2026:生成式AI、代理AI、GEO营销|附400+份报告PDF、数据、可视化模板汇总下载
人工智能
安徽必海微马春梅_6688A16 分钟前
A实验:生物 脑损伤打击器 自由落体打击器 大小鼠脑损伤打击器 资料说明。
人工智能·信号处理
有Li17 分钟前
肌肉骨骼感知(MUSA)深度学习用于解剖引导的头颈部CT可变形图像配准/文献速递-基于人工智能的医学影像技术
人工智能·深度学习·机器学习·文献·医学生
AAD5558889921 分钟前
基于改进Mask-RCNN的文化文物遗产识别与分类系统_1
人工智能·数据挖掘
呱呱巨基31 分钟前
Linux 第一个系统程序 进度条
linux·c++·笔记·学习