LLM论文笔记 24: A Theory for Length Generalization in Learning to Reason

  • Arxiv日期:2024.7.29
  • 机构:University of Illinois Chicago

关键词

  • 长度泛化
  • 理论证明

核心结论

  • Theorem 3.1:因果函数的学习条件

    • 因果函数 f 是完全可学习的(输入空间有限、因果函数输入维度有限),即可以通过有限的训练数据准确地学习到目标函数
  • Corollary 3.1.1:数据覆盖不足的影响

    • 训练数据未覆盖输入空间 X 的所有可能值,模型可能无法正确预测未知输入上的因果关系
  • Corollary 3.1.2:输入空间无限的后果

    • 如果输入空间 X 或输入维度是无限的,无论训练数据集有多大,模型在未知输入上的误差总是可能任意大
  • Theorem 3.2:递归推理与长度泛化

    • 如果因果函数 f 被完全学习,推理问题可以表示为有向无环图(DAG),则通过递归地应用 f ,可以解决任意长度或规模的问题

    • 训练中仅见过小规模问题的模型可以泛化到更长的推理任务

  • Theorem 3.3:局部性条件与滑动窗口机制

    • 滑动窗口是解决长度泛化问题的充分条件

    • 如果推理问题的最大输入元素距离 R < ∞ ,并且训练数据包含所有长度为 4R+1 的子序列(可以通过滑动窗口(长度为 4R+1 )唯一确定下一步推理的输入)

  • Definition 3.3:well-defined 的因果输入恢复

    • 如果推理问题是 (n, r) -一致的,可以定义一个函数 ,通过 n 个长度为 r 的子序列唯一恢复当前推理步骤所需的因果输入
  • Theorem 3.5:从 R < ∞ (1, 4R+1) -一致性

    • 如果 R < ∞ 且每个输入元素最多参与一个推理步骤,则问题是 (1, 4R+1) -一致的
  • Theorem 3.6:因果输入的可恢复性

    • 如果问题是 (n, r) -一致的:

      • 可以通过 n 个长度为 r 的子序列恢复推理步骤中所有的因果输入。

      • 因果输入集合 是well-defined 的,并可以通过函数 \gamma 唯一确定。

  • Theorem 3.7: 的学习性

    • 如果问题是 (n, r) 一致的,函数 可以通过有限训练数据学习。

主要方法

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
大学生毕业题目18 分钟前
毕业项目推荐:83-基于yolov8/yolov5/yolo11的农作物杂草检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·杂草识别
居7然23 分钟前
美团大模型“龙猫”登场,能否重塑本地生活新战局?
人工智能·大模型·生活·美团
肥肠可耐的西西公主36 分钟前
后端(fastAPI)学习笔记(CLASS 1):扩展基础
笔记·学习·fastapi
说私域39 分钟前
社交新零售时代本地化微商的发展路径研究——基于开源AI智能名片链动2+1模式S2B2C商城小程序源的创新实践
人工智能·开源·零售
IT_陈寒43 分钟前
Python性能优化:5个被低估的魔法方法让你的代码提速50%
前端·人工智能·后端
Deng_Xian_Sheng1 小时前
有哪些任务可以使用无监督的方式训练深度学习模型?
人工智能·深度学习·无监督
数据科学作家4 小时前
学数据分析必囤!数据分析必看!清华社9本书覆盖Stata/SPSS/Python全阶段学习路径
人工智能·python·机器学习·数据分析·统计·stata·spss
CV缝合救星5 小时前
【Arxiv 2025 预发行论文】重磅突破!STAR-DSSA 模块横空出世:显著性+拓扑双重加持,小目标、大场景统统拿下!
人工智能·深度学习·计算机视觉·目标跟踪·即插即用模块
Chandler_Song7 小时前
【设计模式】依赖注入和工厂模式
论文阅读
TDengine (老段)7 小时前
从 ETL 到 Agentic AI:工业数据管理变革与 TDengine IDMP 的治理之道
数据库·数据仓库·人工智能·物联网·时序数据库·etl·tdengine