LLM论文笔记 24: A Theory for Length Generalization in Learning to Reason

  • Arxiv日期:2024.7.29
  • 机构:University of Illinois Chicago

关键词

  • 长度泛化
  • 理论证明

核心结论

  • Theorem 3.1:因果函数的学习条件

    • 因果函数 f 是完全可学习的(输入空间有限、因果函数输入维度有限),即可以通过有限的训练数据准确地学习到目标函数
  • Corollary 3.1.1:数据覆盖不足的影响

    • 训练数据未覆盖输入空间 X 的所有可能值,模型可能无法正确预测未知输入上的因果关系
  • Corollary 3.1.2:输入空间无限的后果

    • 如果输入空间 X 或输入维度是无限的,无论训练数据集有多大,模型在未知输入上的误差总是可能任意大
  • Theorem 3.2:递归推理与长度泛化

    • 如果因果函数 f 被完全学习,推理问题可以表示为有向无环图(DAG),则通过递归地应用 f ,可以解决任意长度或规模的问题

    • 训练中仅见过小规模问题的模型可以泛化到更长的推理任务

  • Theorem 3.3:局部性条件与滑动窗口机制

    • 滑动窗口是解决长度泛化问题的充分条件

    • 如果推理问题的最大输入元素距离 R < ∞ ,并且训练数据包含所有长度为 4R+1 的子序列(可以通过滑动窗口(长度为 4R+1 )唯一确定下一步推理的输入)

  • Definition 3.3:well-defined 的因果输入恢复

    • 如果推理问题是 (n, r) -一致的,可以定义一个函数 ,通过 n 个长度为 r 的子序列唯一恢复当前推理步骤所需的因果输入
  • Theorem 3.5:从 R < ∞ (1, 4R+1) -一致性

    • 如果 R < ∞ 且每个输入元素最多参与一个推理步骤,则问题是 (1, 4R+1) -一致的
  • Theorem 3.6:因果输入的可恢复性

    • 如果问题是 (n, r) -一致的:

      • 可以通过 n 个长度为 r 的子序列恢复推理步骤中所有的因果输入。

      • 因果输入集合 是well-defined 的,并可以通过函数 \gamma 唯一确定。

  • Theorem 3.7: 的学习性

    • 如果问题是 (n, r) 一致的,函数 可以通过有限训练数据学习。

主要方法

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
京东零售技术3 小时前
京东零售胡浩:智能供应链从运筹到大模型到超级智能体的演进
大数据·人工智能
榕壹云3 小时前
GEO正在通过大模型技术重构企业数字营销生态
人工智能·重构·geo
rzjslSe7 小时前
【JavaGuide学习笔记】理解并发(Concurrency)与并行(Parallelism)的区别
java·笔记·学习
K姐研究社7 小时前
通义万相Wan2.5模型实测,可生成音画同步视频
人工智能·aigc·音视频
云起SAAS7 小时前
老年ai模拟恋爱抖音快手微信小程序看广告流量主开源
人工智能·微信小程序·小程序·ai编程·看广告变现轻·老年ai模拟恋爱·ai模拟恋爱
茯苓gao7 小时前
CAN总线学习(四)错误处理 STM32CAN外设一
网络·笔记·stm32·单片机·学习
Source.Liu7 小时前
【mdBook】1 安装
笔记·rust·markdown
航Hang*8 小时前
Kurt-Blender零基础教程:第3章:材质篇——第3节:给模型上材质
笔记·blender·材质
ModelWhale9 小时前
喜报!和鲸科技获张江国家自主创新示范区专项发展资金支持
大数据·人工智能·科研
jun~9 小时前
SQLMap数据库枚举靶机(打靶记录)
linux·数据库·笔记·学习·安全·web安全