LLM论文笔记 24: A Theory for Length Generalization in Learning to Reason

  • Arxiv日期:2024.7.29
  • 机构:University of Illinois Chicago

关键词

  • 长度泛化
  • 理论证明

核心结论

  • Theorem 3.1:因果函数的学习条件

    • 因果函数 f 是完全可学习的(输入空间有限、因果函数输入维度有限),即可以通过有限的训练数据准确地学习到目标函数
  • Corollary 3.1.1:数据覆盖不足的影响

    • 训练数据未覆盖输入空间 X 的所有可能值,模型可能无法正确预测未知输入上的因果关系
  • Corollary 3.1.2:输入空间无限的后果

    • 如果输入空间 X 或输入维度是无限的,无论训练数据集有多大,模型在未知输入上的误差总是可能任意大
  • Theorem 3.2:递归推理与长度泛化

    • 如果因果函数 f 被完全学习,推理问题可以表示为有向无环图(DAG),则通过递归地应用 f ,可以解决任意长度或规模的问题

    • 训练中仅见过小规模问题的模型可以泛化到更长的推理任务

  • Theorem 3.3:局部性条件与滑动窗口机制

    • 滑动窗口是解决长度泛化问题的充分条件

    • 如果推理问题的最大输入元素距离 R < ∞ ,并且训练数据包含所有长度为 4R+1 的子序列(可以通过滑动窗口(长度为 4R+1 )唯一确定下一步推理的输入)

  • Definition 3.3:well-defined 的因果输入恢复

    • 如果推理问题是 (n, r) -一致的,可以定义一个函数 ,通过 n 个长度为 r 的子序列唯一恢复当前推理步骤所需的因果输入
  • Theorem 3.5:从 R < ∞ (1, 4R+1) -一致性

    • 如果 R < ∞ 且每个输入元素最多参与一个推理步骤,则问题是 (1, 4R+1) -一致的
  • Theorem 3.6:因果输入的可恢复性

    • 如果问题是 (n, r) -一致的:

      • 可以通过 n 个长度为 r 的子序列恢复推理步骤中所有的因果输入。

      • 因果输入集合 是well-defined 的,并可以通过函数 \gamma 唯一确定。

  • Theorem 3.7: 的学习性

    • 如果问题是 (n, r) 一致的,函数 可以通过有限训练数据学习。

主要方法

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
说私域5 分钟前
开源链动2+1模式、AI智能名片与S2B2C商城小程序:社群经济的数字化重构路径
人工智能·小程序·开源
lingchen19066 分钟前
卷积神经网络中的卷积运算原理
深度学习·计算机视觉·cnn
rengang668 分钟前
智能化的重构建议:大模型分析代码结构,提出可读性和性能优化建议
人工智能·性能优化·重构·ai编程
灵遁者书籍作品17 分钟前
语言的拓扑学约束公理:语言对实在的描述具有拓扑不变量——某些真理必须通过悖论、沉默或隐喻表达
人工智能·计算机视觉
一尘之中18 分钟前
觉醒的拓扑学:在量子纠缠与神经幻象中重构现实认知
人工智能·重构
金宗汉18 分钟前
《宇宙递归拓扑学:基于自指性与拓扑流形的无限逼近模型》
大数据·人工智能·笔记·算法·观察者模式
Joy T43 分钟前
海南蓝碳:生态财富与科技驱动的新未来
大数据·人工智能·红树林·海南省·生态区建设
狮智先生1 小时前
【学习笔记】利用meshlab进行曲面的质量检查
经验分享·笔记·课程设计·几何学
N0nename1 小时前
TR3--Transformer之pytorch复现
人工智能·pytorch·python
北京耐用通信1 小时前
电力自动化新突破:Modbus如何变身Profinet?智能仪表连接的终极解决方案
人工智能·物联网·网络安全·自动化·信息与通信