GPU加速Kubernetes集群助力音视频转码与AI工作负载扩展

容器编排与GPU计算的结合,为追求性能优化的企业开辟了战略转型的新路径

基于GPU的托管Kubernetes集群不仅是技术选择,更是彻底改变企业处理高负载任务的战略部署方式。

随着人工智能和机器学习项目激增、实时数据处理需求的剧增,以及高性能媒体处理和流媒体的迫切需求,GPU加速工作负载正蓬勃发展。

媒体与流媒体应用需要不断调整以应对流量高峰需求。虽然体育赛事直播等场景可以预测突发流量,但更多情况下难以预判需求高峰。基于边缘原生应用,通过Kubernetes确保底层基础设施既能弹性扩展以应对峰值需求,同时保持稳定性能,并避免资源闲置带来的成本。

高效转码是可扩展媒体应用,尤其是直播流媒体的核心组件。如今,我们在托管的Kubernetes集群中提供 GPU 节点池,为客户提供了更便捷的解决方案。

重磅发布:Linode Kubernetes Engine支持NVIDIA RTX 4000 Ada架构GPU

我们宣布Linode Kubernetes Engine正式兼容NVIDIA RTX 4000 Ada架构GPU。该系列方案专为媒体场景优化,每张显卡配备2个编码引擎、2个解码引擎和1个AV1编码引擎,能够适应多样化工作负载。RTX 4000 Ada基础配置(1 GPU/4 CPU/16GB内存)起售价仅0.52美元/小时。

部署流程简便:

创建Kubernetes集群时,选择合适的GPU方案并设置节点池规模即可。
注意: 需选择GPU可用区域,当前支持以下区域:

• 美国芝加哥(us-ord)

• 美国西雅图(us-sea)

• 德国法兰克福扩展区(de-fra-2)

• 法国巴黎(fr-par)

• 日本大阪(jp-osa)

• 新加坡扩展区(sg-sin-2)

直达Kubernetes价值的快车道

为降低开发者构建与管理Kubernetes工作负载时的复杂度,我们新推出的Akamai应用平台同样支持GPU加速。该平台兼具K8s的快速部署能力与GPU的强劲算力,为媒体处理、AI等高负载应用打造了成本、性能与规模三重优势,是理想解决方案。

立即注册账户并查阅Kubernetes文档开启体验,或联系云计算顾问获取支持。

注:应用平台目前处于Beta测试阶段,需通过Beta计划页面激活后方可在集群中部署。

相关推荐
小鸡吃米…32 分钟前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
有谁看见我的剑了?1 小时前
VMware OVF Tool 工具安装学习
云计算
好奇龙猫1 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)1 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan1 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维1 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS1 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd2 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟2 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然2 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析