3DGS输入的三个bin文件的作用


提示仅代表个人学习记录,不专业


1.cameras.bin(相机内参)

记录内容:每个相机的 id、model(成像模型)、width、height、params(如 PINHOLE 为 fx, fy, cx, cy)。

在本项目中的用法

从 params 推导 FovX/FovY,用于构建投影几何,把三维高斯正确投到二维图像。

限制:项目仅支持"无畸变"的 PINHOLE 或 SIMPLE_PINHOLE(畸变模型不会被使用)。

影响点:影响渲染的视角投影、像素坐标到射线的变换、图像分辨率。

2.images.bin(相机外参与图像列表)

记录内容:每张图像的 id、qvec(旋转四元数)、tvec(平移)、camera_id(指向上面的相机)、name(图像文件名),以及每个像素的匹配信息 xys/point3D_ids(2D-3D对应,供 SfM 使用)。

在本项目中的用法:

用 qvec/tvec 转为 R/T,构建每一帧训练/测试相机;用 name 定位 GT 图像文件。

训练循环中"按相机视角渲染→与该视角的 GT 比较→计算损失"完全依赖这些位姿。

用于场景归一化(nerfpp normalization):根据所有相机中心估计场景中心与尺度,保证训练稳定。

曝光学习映射键使用图像名(保存到 exposure.json)。

影响点:决定从哪个视角监督、渲染时的相机姿态、训练/验证划分(结合 LLFF hold 或 test.txt)。

3.points3D.bin(稀疏三维点云)

记录内容:全局稀疏点的 id、xyz、rgb、error、可见图像 image_ids、与之对应的 point2D_idxs。

在本项目中的用法:

初始点云来源:首次加载 COLMAP 数据时,会将 points3D.bin|txt 转换为 sparse/0/points3D.ply(见 storePly),再复制为模型目录的 input.ply。

该 input.ply 构成训练的初始高斯集合(位置与颜色的初始化),之后在训练过程中被优化为 point_cloud/iteration_*/point_cloud.ply。

影响点:决定初始几何与颜色起点;不直接参与后续每步损失计算(那部分用的是相机与图像)。

关系与差异

几何起点 :来自 points3D.bin → 转 points3D.ply → 复制为 input.ply。
相机投影与位姿 :来自 cameras.bin(内参)与 images.bin(外参+图像名)。
监督数据:通过 images.bin 的 name 去读取对应的图像作为 GT。


相关推荐
DDC楼宇自控与IBMS集成系统解读2 小时前
DDC 楼宇自控系统 + 3D 可视化运维管理平台融合解决方案
运维·3d
YAY_tyy3 小时前
Three.js 开发实战教程(五):外部 3D 模型加载与优化实战
前端·javascript·3d·three.js
杀生丸学AI3 小时前
【无标题】SceneSplat:基于视觉-语言预训练的3DGS场景理解
3d·aigc·slam·语义分割·三维重建·视觉大模型·空间智能
Zuckjet_6 小时前
开启 3D 之旅 - 你的第一个 WebGL 三角形
前端·javascript·3d·webgl
2401_863801466 小时前
探索 12 种 3D 文件格式:综合指南
前端·3d
gaosushexiangji10 小时前
高QE sCMOS相机在SIM超分辨显微成像中的应用
数码相机
山烛10 小时前
OpenCV:人脸检测,Haar 级联分类器原理
人工智能·opencv·计算机视觉·人脸检测·harr级联分类器
IT古董10 小时前
【第五章:计算机视觉-项目实战之目标检测实战】2.目标检测实战:中国交通标志检测-(2)中国交通标志检测数据格式转化与读取
算法·目标检测·计算机视觉
IT古董12 小时前
【第五章:计算机视觉-项目实战之图像分割实战】1.图像分割理论-(1)图像分割基础知识:定义、任务描述、应用场景、标注格式
yolo·目标检测·计算机视觉