AAAI 2026将在2026年1月20日到1月27日于新加坡(Singapore)举行。AAAI 2026会议主会共有23, 680篇论文投稿,其中4, 167 篇被接收,接收率为17.6%。
本文总结了2026 AAAI 上有关时间序列(Time Series)相关论文。如有疏漏,欢迎大家补充。
时间序列Topic :时间序列预测,异常检测,分类,生成,表示学习,医疗时序,基础模型,大语言模型等内容。总计67 篇,本文涉及32篇。
注 :由于论文数目较多,分为上下篇 ,此为下篇 ,主要涵盖分类,异常检测,基础模型,表示学习,生成等。
| 36. A Unified Shape-Aware Foundation Model for Time Series Classification 37. MedSpaformer: A Transferable Transformer with Multi-Granularity Token Sparsification for Medical Time Series Classification 38. Counterfactual eXplainable AI (XAI) Method for Deep Learning-Based Multivariate Time Series Classification 39. EdgeMTSC: A Lightweight Large-Kernel ConvNet for Multivariate Time Series Classification 40. FlowPath: Learning Data-Driven Manifolds with Invertible Flows for Robust Irregularly-sampled Time Series Classification 41. SVGL: Scale-Variable Graph Learning in Model Space for Multivariate Time Series Classification 42. CANDI: Curated Test-Time Adaptation for Multivariate Time-Series Anomaly Detection Under Distribution Shift 43. Finding Time Series Anomalies Using Granular-Ball Vector Data Description 44. DoKnowAD: Calibrating Normal Representations with Refined Domain Knowledge to Enhance Time Series Anomaly Detection 45. Harnessing Vision-Language Models for Time Series Anomaly Detection 46. A Theoretical Analysis of Detecting Large Model-Generated Time Series 47. State-Derivative-Aware Neural Controlled Differential Equations for Multivariate Time Series Anomaly Detection and Diagnosis 48. ORTCL: Towards Continual Learning of Time Series Foundation Models on Streaming Data via Orthogonal Rotation 49. DeepSenseMoE: Harnessing Power of Time Series Foundation Models for Few-Shot Human Activity Recognition 50. FreqCycle: A Multi-Scale Time-Frequency Analysis Method for Time Series Forecasting 51. Koopman Invariants as Drivers of Emergent Time-Series Clustering in Joint-Embedding Predictive Architectures 52. Mask the Redundancy: Evolving Masking Representation Learning for Multivariate Time-Series Clustering 53. COGS: A Causal Representation Learning Framework for Out-of-Distribution Generalization in Time Series 54. Role Hypergraph Contrastive Learning for Multivariate Time-Series Analysis 55. Intervention-Aware Time Series Modeling: Capturing and Evaluating Feature Dependencies 56. Unifying Channel Independence and Mixing: Multi-Scale Patch Recursion for Global-local Representation Synergy in Multivariate Time Series Forecasting 57. Beyond Observations: Reconstruction Error-Guided Irregularly Sampled Time Series Representation Learning 58. TGCD: A Framework for Generalized Category Discovery in Time-Series Data 59. CaT-Diff: Cascaded Text-enhanced Diffusion Model for Time-Series Imputation 60. Dynamic Semantic Tokenization for Time Series via Elastic Sampling on Physics-aware Perception 61. TSGDiff: Rethinking Synthetic Time Series Generation from a Pure Graph Perspective 62. Neural Architecture and Hyperparameter Selection Through Meta-Learning on Time Series 63. Time-Frequency Augmented Multi-level Contrastive Clustering for Time Series 64. DiM-TS: Bridge the Gap Between Selective State Space Models and Time Series for Generative Modeling 65. Time Series Class-Incremental Learning via Confidence-guided Mask Distillation and Prototype-guided Contrastive Learning 66. R-Tuning: Wavelet-Decomposed Replay and Semantic Alignment for Continual Adaptation of Pretrained Time-Series Models 67. Learnable Matrix Profile for Motif Discovery on Multivariate Time Series |
|---|
🌟【紧跟前沿】"时空探索之旅"与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅

36 A Unified Shape-Aware Foundation Model for Time Series Classification
链接 :++https://github.com/ZLiu21/UniShape++
作者:Zhen Liu; Yucheng Wang; Boyuan Li; Junhao Zheng; Emadeldeen Eldele; Min Wu; Qianli Ma
关键词:分类,基础模型

37 MedSpaformer: A Transferable Transformer with Multi-Granularity Token Sparsification for Medical Time Series Classification
链接 :++https://arxiv.org/abs/2503.15578++
作者:Jiexia YE; Weiqi Zhang; Ziyue Li; Jia Li; Fugee Tsung
关键词:分类,医疗时序,迁移,多粒度

38 Counterfactual eXplainable AI (XAI) Method for Deep Learning-Based Multivariate Time Series Classification
链接 :++https://arxiv.org/abs/2511.13237++
作者:Alan Gabriel Paredes Cetina; Kaouther Benguessoum; Raoni Lourenco; Sylvain Kubler
关键词:分类,反事实,可解释性AI

39 EdgeMTSC: A Lightweight Large-Kernel ConvNet for Multivariate Time Series Classification
作者:Xueyi Zhou; Zhenyu Li; Dong-Kyu Chae
关键词:分类,轻量化大核卷积
40 FlowPath: Learning Data-Driven Manifolds with Invertible Flows for Robust Irregularly-sampled Time Series Classification
链接 :++https://www.arxiv.org/abs/2511.10841++
作者:YongKyung Oh; Dongyoung Lim; Sungil Kim
关键词:分类,不规则采样

41 SVGL: Scale-Variable Graph Learning in Model Space for Multivariate Time Series Classification
作者:Shikang Liu; Ziyu Tang; Xiren Zhou; Huanhuan Chen
关键词:分类,图学习
42 CANDI: Curated Test-Time Adaptation for Multivariate Time-Series Anomaly Detection Under Distribution Shift
作者:HyunGi Kim; Jisoo Mok; Hyungyu Lee; Juhyeon Shin; Sungroh Yoon
关键词:异常检测,分布偏移,测试时适应
43 Finding Time Series Anomalies Using Granular-Ball Vector Data Description
链接 :++https://www.arxiv.org/abs/2511.12147++
作者:Lifeng Shen; Liang Peng; RuiwenLiu; Shuyin Xia; Y I Liu
关键词:异常检测,聚类

44 DoKnowAD: Calibrating Normal Representations with Refined Domain Knowledge to Enhance Time Series Anomaly Detection
作者:Shiwang Xing; Jianwei Niu; Tao Ren
关键词:异常检测,知识校准
45 Harnessing Vision-Language Models for Time Series Anomaly Detection
链接 :++https://arxiv.org/abs/2506.06836++
作者:Zelin He; Sarah Alnegheimish; Matthew Reimherr
关键词:异常检测,视觉模型

46 A Theoretical Analysis of Detecting Large Model-Generated Time Series
链接 :++https://arxiv.org/abs/2511.07104++
作者:Junji Hou; Junzhou Zhao; Shuo Zhang; Pinghui Wang
关键词:异常检测,时间序列大模型

47 State-Derivative-Aware Neural Controlled Differential Equations for Multivariate Time Series Anomaly Detection and Diagnosis
作者:Xin Sun; Heng Zhou; Yuhao Wu; Chao Li
关键词:异常检测,诊断,微分方程
48 ORTCL: Towards Continual Learning of Time Series Foundation Models on Streaming Data via Orthogonal Rotation
作者:Li Lin; Xinrui Zhang; Qi Zhang; Shuai Wang; Kaiwen Xia
关键词:基础模型,持续学习,流式数据
49 DeepSenseMoE: Harnessing Power of Time Series Foundation Models for Few-Shot Human Activity Recognition
作者:Zenan Fu; Dongzhou Cheng; Lei Zhang; Wenbo Huang; Zhenghao Chen; Hao Wu
关键词:基础模型,少样本人类活动识别
50 FreqCycle: A Multi-Scale Time-Frequency Analysis Method for Time Series Forecasting
作者:Boya Zhang; Shuaijie Yin; Huiwen Zhu; Xing He
关键词:预测,时频分析
51 Koopman Invariants as Drivers of Emergent Time-Series Clustering in Joint-Embedding Predictive Architectures
链接 :++https://arxiv.org/abs/2511.09783++
作者:Pablo Ruiz-Morales; Dries Vanoost; Davy Pissoort; Mathias Verbeke
关键词:聚类,库普曼理论

52 Mask the Redundancy: Evolving Masking Representation Learning for Multivariate Time-Series Clustering
链接 :++https://arxiv.org/abs/2511.17008++
作者:Zexi Tan; Xiaopeng Luo; Yunlin Liu; Yiqun Zhang
关键词:表示学习,聚类

53 COGS: A Causal Representation Learning Framework for Out-of-Distribution Generalization in Time Series
作者:Xinxin Song; Yuxiao Cheng; Tingxiong Xiao; Jinli Suo
关键词:因果表示学习,分布外泛化
54 Role Hypergraph Contrastive Learning for Multivariate Time-Series Analysis
作者:Rundong Xue; Hao Hu; Zhitao Zeng; Xiangmin Han; Zhiqiang Tian; Shaoyi Du; Yue Gao
关键词:时序分析,超图对比学习
55 Intervention-Aware Time Series Modeling: Capturing and Evaluating Feature Dependencies
作者:Ibrahim Delibasoglu; Sanjay Chakraborty; Fredrik Heintz; Mattias Tiger
关键词:时序建模,特征依赖性
56 Unifying Channel Independence and Mixing: Multi-Scale Patch Recursion for Global-local Representation Synergy in Multivariate Time Series Forecasting
作者:Wenhao Zhang; Chun Zhang; Wei Bai; Ning Zhang; Changxia Gao; Yuxin Jia; Chenhao Shi; Shaoxiong Pang
关键词:预测,通道独立,全局-局部
57 Beyond Observations: Reconstruction Error-Guided Irregularly Sampled Time Series Representation Learning
链接 :++https://arxiv.org/abs/2511.06854++
作者:Jiexi Liu; Meng Cao; Songcan Chen
关键词:表示学习,不规则时序

58 TGCD: A Framework for Generalized Category Discovery in Time-Series Data
作者:Chandan Gautam; Lew Choon Hean; Ankit Das; Xiaoli Li; Savitha Ramasamy
关键词:类别发现,泛化

59 CaT-Diff: Cascaded Text-enhanced Diffusion Model for Time-Series Imputation
作者:Changjian Xu; Yong Wang; Ruizheng Huang; Zhicheng Zhang; Wen Yin; Kexin Li
关键词:插补,扩散模型,文本增强
60 Dynamic Semantic Tokenization for Time Series via Elastic Sampling on Physics-aware Perception
作者:Huaizhang Liao; Zhixiong Yang; Jingyuan Xia; Yuheng Sun; Yue Zhang; Shengxi Li; Yongxiang Liu
关键词:时序tokenize,物理感知

61 TSGDiff: Rethinking Synthetic Time Series Generation from a Pure Graph Perspective
链接 :++https://arxiv.org/abs/2511.12174++
作者:Lifeng Shen; Xuyang Li; Lele Long
关键词:生成,图

62 Neural Architecture and Hyperparameter Selection Through Meta-Learning on Time Series
作者:Erfan Moeini; Christopher Vox; Marie Anastacio; Wadie Skaf; Mitra Baratchi; Holger H. Hoos
关键词:神经架构,超参选择,元学习
63 Time-Frequency Augmented Multi-level Contrastive Clustering for Time Series
作者:Congyu Wang; Mingjing Du; Jiang Xiang
关键词:时频增强,对比学习
64 DiM-TS: Bridge the Gap Between Selective State Space Models and Time Series for Generative Modeling
链接 :++https://arxiv.org/abs/2511.18312++
作者:Zihao Yao; Jiankai Zuo; Yaying Zhang
关键词:生成,状态空间模型(Mamba)

65 Time Series Class-Incremental Learning via Confidence-guided Mask Distillation and Prototype-guided Contrastive Learning
作者:Yu Liu; Haoqin Yang; Jinping Sui; Hui Wang; Haipeng Li; Weimin Wang; Qi Jia
关键词:增量学习,对比学习,蒸馏
66 R-Tuning: Wavelet-Decomposed Replay and Semantic Alignment for Continual Adaptation of Pretrained Time-Series Models
链接 :++https://www.arxiv.org/abs/2511.11685++
作者:Tianyi Yin; Jingwei Wang; Chenze Wang; Han Wang; Jiexuan Cai; Min Liu; Yunlong Ma; Kun Gao; Yuting Song; Weiming Shen
关键词:小波分解,语义对齐

67 Learnable Matrix Profile for Motif Discovery on Multivariate Time Series
作者:Mingkai Lin; Yinke Wang; Xiaobin Hong; Wenzhong Li
关键词:模式发现,矩阵概要
🌟【紧跟前沿】"时空探索之旅"与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅
