举例说明基于线性回归的单层神经网络网络(以梯度下降算法来求解权重的过程)...

我们将通过一个简单的例子来说明基于线性回归的单层神经网络,以及如何使用梯度下降算法来求解权重。

假设我们有以下数据集,表示学生的学习时间(小时)与他们的考试分数:

学习时间(X):1, 2, 3, 4, 5

考试分数(Y):2, 4, 6, 8, 10

这是一个线性关系,我们可以使用线性回归来预测给定学习时间的考试分数。在这个例子中,单层神经网络只有一个输入节点(学习时间)和一个输出节点(考试分数)。我们的目标是找到一个权重 w 和偏置 b,这样我们的神经网络可以很好地拟合数据。线性回归的公式如下:

y = wx + b

梯度下降算法是一种优化算法,用于最小化损失函数(在这种情况下为均方误差MSE)。损失函数表示我们模型的预测值与实际值之间的差异。

  1. 首先,我们需要初始化权重 w 和偏置 b 的值。我们可以将它们初始化为0或任意其他较小的值。例如,w = 0,b = 0。

  2. 然后,我们需要计算损失函数关于权重和偏置的梯度。在这种情况下,我们使用均方误差(MSE)作为损失函数。对于权重 w 和偏置 b,梯度可以表示为:

∂MSE/∂w = (-2/n) * Σ(xi * (yi - (w * xi + b)))

∂MSE/∂b = (-2/n) * Σ(yi - (w * xi + b))

其中 n 为数据点数量,xi 和 yi 分别为输入(学习时间)和输出(考试分数)。

  1. 现在我们需要更新权重和偏置。我们使用学习率(α)来控制每次更新的幅度。权重和偏置的更新公式如下:

w = w - α * (∂MSE/∂w)

b = b - α * (∂MSE/∂b)

  1. 重复步骤2和3多次,直到损失函数收敛到最小值。

假设我们选择学习率α为0.01,迭代100次。在这个例子中,我们可以计算出权重和偏置的最优值,例如 w ≈ 2 和 b ≈ 0。这意味着我们的预测模型为 y = 2x + 0

总结:

通过使用梯度下降算法,我们可以找到基于线性回归的单层神经网络的权重和偏置。在我们的例子中,权重 w ≈ 2,偏置 b ≈ 0。这使我们能够使用神经网络预测给定学习时间的考试分数。

相关推荐
m0_751336391 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
拓端研究室2 小时前
视频讲解:门槛效应模型Threshold Effect分析数字金融指数与消费结构数据
前端·算法
随缘而动,随遇而安4 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
美狐美颜sdk4 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程4 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝4 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
IT古董4 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
小雷FansUnion6 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周6 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
水木兰亭7 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法