举例说明基于线性回归的单层神经网络网络(以梯度下降算法来求解权重的过程)...

我们将通过一个简单的例子来说明基于线性回归的单层神经网络,以及如何使用梯度下降算法来求解权重。

假设我们有以下数据集,表示学生的学习时间(小时)与他们的考试分数:

学习时间(X):1, 2, 3, 4, 5

考试分数(Y):2, 4, 6, 8, 10

这是一个线性关系,我们可以使用线性回归来预测给定学习时间的考试分数。在这个例子中,单层神经网络只有一个输入节点(学习时间)和一个输出节点(考试分数)。我们的目标是找到一个权重 w 和偏置 b,这样我们的神经网络可以很好地拟合数据。线性回归的公式如下:

y = wx + b

梯度下降算法是一种优化算法,用于最小化损失函数(在这种情况下为均方误差MSE)。损失函数表示我们模型的预测值与实际值之间的差异。

  1. 首先,我们需要初始化权重 w 和偏置 b 的值。我们可以将它们初始化为0或任意其他较小的值。例如,w = 0,b = 0。

  2. 然后,我们需要计算损失函数关于权重和偏置的梯度。在这种情况下,我们使用均方误差(MSE)作为损失函数。对于权重 w 和偏置 b,梯度可以表示为:

∂MSE/∂w = (-2/n) * Σ(xi * (yi - (w * xi + b)))

∂MSE/∂b = (-2/n) * Σ(yi - (w * xi + b))

其中 n 为数据点数量,xi 和 yi 分别为输入(学习时间)和输出(考试分数)。

  1. 现在我们需要更新权重和偏置。我们使用学习率(α)来控制每次更新的幅度。权重和偏置的更新公式如下:

w = w - α * (∂MSE/∂w)

b = b - α * (∂MSE/∂b)

  1. 重复步骤2和3多次,直到损失函数收敛到最小值。

假设我们选择学习率α为0.01,迭代100次。在这个例子中,我们可以计算出权重和偏置的最优值,例如 w ≈ 2 和 b ≈ 0。这意味着我们的预测模型为 y = 2x + 0

总结:

通过使用梯度下降算法,我们可以找到基于线性回归的单层神经网络的权重和偏置。在我们的例子中,权重 w ≈ 2,偏置 b ≈ 0。这使我们能够使用神经网络预测给定学习时间的考试分数。

相关推荐
带娃的IT创业者4 分钟前
《AI大模型应知应会100篇》第62篇:TypeChat——类型安全的大模型编程框架
人工智能·安全
灵典3365 分钟前
数据结构入门-二叉树的层序遍历
数据结构·算法
范纹杉想快点毕业9 分钟前
以项目的方式学QT开发(三)——超详细讲解(120000多字详细讲解,涵盖qt大量知识)逐步更新!
c语言·开发语言·c++·qt·mysql·算法·命令模式
补三补四11 分钟前
随机森林(Random Forest)
人工智能·科技·算法·随机森林·机器学习
轮到我狗叫了14 分钟前
力扣.1471数组的k个最强值,力扣.1471数组的k个最强值力扣1576.替换所有的问号力扣1419.数青蛙编辑力扣300.最长递增子序列
java·数据结构·算法
dundunmm29 分钟前
【每天一个知识点】Dip 检验(Dip test)
人工智能·机器学习
赵青临的辉34 分钟前
常见机器学习算法简介:回归、分类与聚类
算法·机器学习·回归
程序员莫小特35 分钟前
【GESP真题解析】第 20 集 GESP 二级 2025 年 3 月编程题 1:等差矩阵
c语言·数据结构·c++·算法·青少年编程·矩阵
weixin_3870021541 分钟前
使用GmSSL v3.1.1实现SM2证书认证
算法·安全·区块链·密码学·ssl
Francek Chen1 小时前
【现代深度学习技术】注意力机制07:Transformer
人工智能·pytorch·深度学习·神经网络·transformer