举例说明基于线性回归的单层神经网络网络(以梯度下降算法来求解权重的过程)...

我们将通过一个简单的例子来说明基于线性回归的单层神经网络,以及如何使用梯度下降算法来求解权重。

假设我们有以下数据集,表示学生的学习时间(小时)与他们的考试分数:

学习时间(X):1, 2, 3, 4, 5

考试分数(Y):2, 4, 6, 8, 10

这是一个线性关系,我们可以使用线性回归来预测给定学习时间的考试分数。在这个例子中,单层神经网络只有一个输入节点(学习时间)和一个输出节点(考试分数)。我们的目标是找到一个权重 w 和偏置 b,这样我们的神经网络可以很好地拟合数据。线性回归的公式如下:

y = wx + b

梯度下降算法是一种优化算法,用于最小化损失函数(在这种情况下为均方误差MSE)。损失函数表示我们模型的预测值与实际值之间的差异。

  1. 首先,我们需要初始化权重 w 和偏置 b 的值。我们可以将它们初始化为0或任意其他较小的值。例如,w = 0,b = 0。

  2. 然后,我们需要计算损失函数关于权重和偏置的梯度。在这种情况下,我们使用均方误差(MSE)作为损失函数。对于权重 w 和偏置 b,梯度可以表示为:

∂MSE/∂w = (-2/n) * Σ(xi * (yi - (w * xi + b)))

∂MSE/∂b = (-2/n) * Σ(yi - (w * xi + b))

其中 n 为数据点数量,xi 和 yi 分别为输入(学习时间)和输出(考试分数)。

  1. 现在我们需要更新权重和偏置。我们使用学习率(α)来控制每次更新的幅度。权重和偏置的更新公式如下:

w = w - α * (∂MSE/∂w)

b = b - α * (∂MSE/∂b)

  1. 重复步骤2和3多次,直到损失函数收敛到最小值。

假设我们选择学习率α为0.01,迭代100次。在这个例子中,我们可以计算出权重和偏置的最优值,例如 w ≈ 2 和 b ≈ 0。这意味着我们的预测模型为 y = 2x + 0

总结:

通过使用梯度下降算法,我们可以找到基于线性回归的单层神经网络的权重和偏置。在我们的例子中,权重 w ≈ 2,偏置 b ≈ 0。这使我们能够使用神经网络预测给定学习时间的考试分数。

相关推荐
不知天地为何吴女士11 分钟前
Day32| 509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
算法
小坏坏的大世界12 分钟前
C++ STL常用容器总结(vector, deque, list, map, set)
c++·算法
励志要当大牛的小白菜3 小时前
ART配对软件使用
开发语言·c++·qt·算法
qq_513970443 小时前
力扣 hot100 Day56
算法·leetcode
白-胖-子3 小时前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
PAK向日葵4 小时前
【算法导论】如何攻克一道Hard难度的LeetCode题?以「寻找两个正序数组的中位数」为例
c++·算法·面试
想要成为计算机高手4 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
静心问道5 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.05 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
爱喝矿泉水的猛男6 小时前
非定长滑动窗口(持续更新)
算法·leetcode·职场和发展