李沐《动手学深度学习》torch.cat() 和 torch.stack()的区别及思考

一、问题引出

好久没更新啦!最近在学习沐神《动手学深度学习》6.5节池化层的时候,发现沐神在两处相似的地方使用了两种Python拼接函数torch.cat()和torch.stack():


百思不得其解,于是查阅相关文档之后终于弄清楚了两者之间的区别,遂做总结如下。

二、问题解决

1.torch.cat()

torch.cat()函数可以将多个张量拼接成一个张量。torch.cat()有两个参数,第一个是要拼接的张量的列表或是元组;第二个参数是拼接的维度

python 复制代码
# 假设是时间步T1的输出
T1 = torch.tensor([[1, 2, 3],
          [4, 5, 6],
          [7, 8, 9]])
# 假设是时间步T2的输出
T2 = torch.tensor([[10, 20, 30],
          [40, 50, 60],
          [70, 80, 90]])
print("T1.shape: ", T1.shape, "T2.shape: ", T2.shape)
print(torch.cat((T1,T2),dim=0).shape)
print(torch.cat((T1,T2),dim=1).shape)

输出为:

2.torch.stack()

torch.stack()函数同样有张量列表和维度两个参数。stack与cat的区别在于,torch.stack()函数要求输入张量的大小完全相同,得到的张量的维度会比输入的张量的大小多1,并且多出的那个维度就是拼接的维度,那个维度的大小就是输入张量的个数。

python 复制代码
print("T1.shape: ", T1.shape, "T2.shape: ", T2.shape)
print(torch.stack((T1,T2),dim=0).shape)
print(torch.stack((T1,T2),dim=1).shape)
print(torch.stack((T1,T2),dim=2).shape)

输出为:

三、总结

总的来说,cat 和 stack的区别在于 cat会增加现有维度的值,可以理解为续接,stack会新加增加一个维度,可以理解为叠加。

使用stack可以保留两个信息:[1. 序列] 和 [2. 张量矩阵] 信息,属于【扩张再拼接】的函数。形象的理解:假如数据都是二维矩阵(平面),它可以把这些一个个平面(矩阵)按第三维(例如:时间序列)压成一个三维的立方体,而立方体的长度就是时间序列长度。该函数常出现在自然语言处理(NLP)和图像卷积神经网络(CV)中。

欢迎大家一起跟着学习沐神的《动手学深度学习》,我建了一个github网站,发布了我的日常学习笔记,欢迎大家star!,网址为https://github.com/BugMaker2002/DeepLearningAction-LiMu

相关推荐
查理零世10 分钟前
保姆级讲解 python之zip()方法实现矩阵行列转置
python·算法·矩阵
刀客12321 分钟前
python3+TensorFlow 2.x(四)反向传播
人工智能·python·tensorflow
SpikeKing27 分钟前
LLM - 大模型 ScallingLaws 的设计 100B 预训练方案(PLM) 教程(5)
人工智能·llm·预训练·scalinglaws·100b·deepnorm·egs
时间很奇妙!1 小时前
decison tree 决策树
算法·决策树·机器学习
小枫@码1 小时前
免费GPU算力,不花钱部署DeepSeek-R1
人工智能·语言模型
liruiqiang051 小时前
机器学习 - 初学者需要弄懂的一些线性代数的概念
人工智能·线性代数·机器学习·线性回归
Icomi_1 小时前
【外文原版书阅读】《机器学习前置知识》1.线性代数的重要性,初识向量以及向量加法
c语言·c++·人工智能·深度学习·神经网络·机器学习·计算机视觉
微学AI1 小时前
GPU算力平台|在GPU算力平台部署可图大模型Kolors的应用实战教程
人工智能·大模型·llm·gpu算力
西猫雷婶1 小时前
python学opencv|读取图像(四十六)使用cv2.bitwise_or()函数实现图像按位或运算
人工智能·opencv·计算机视觉
IT古董1 小时前
【深度学习】常见模型-生成对抗网络(Generative Adversarial Network, GAN)
人工智能·深度学习·生成对抗网络