@article{zhao2023ddfm,
title={DDFM: denoising diffusion model for multi-modality image fusion},
author={Zhao, Zixiang and Bai, Haowen and Zhu, Yuanzhi and Zhang, Jiangshe and Xu, Shuang and Zhang, Yulun and Zhang, Kai and Meng, Deyu and Timofte, Radu and Van Gool, Luc},
journal={arXiv preprint arXiv:2303.06840},
year={2023}
}
论文级别:ICCV 2023
影响因子:-
文章目录
📖论文解读
这篇文章和CDDFuse是同一个团队的成果。
作者利用扩散概率模型DDPM(denoising diffusion probabilistic model )用在多模态图像融合任务中,提出了去噪扩散图像融合模型(Denoising Diffusion image Fusion Model (DDFM)),融合任务被定义为了在DDPM采样网络下的条件生成问题,并进一步划分为了:无条件生成和最大似然这两个子问题。
🔑关键词
扩散概率模型,多模态图像融合
💭核心思想
以后再填坑,公式推导太多了,哭泣.gif
🪢网络结构
作者提出的网络结构如下所示。
📉损失函数
🔢数据集
- TNO, RoadScene, MSRS, M3FD
图像融合数据集链接
[图像融合常用数据集整理]
🎢训练设置
🔬实验
📏评价指标
- EN
- SD
- MI
- VIF
- Qabf
- SSIM
参考资料
[图像融合定量指标分析]
🥅Baseline
- FusionGAN, GANMcC, TarDAL, UMFusion, U2Fusion, RFNet, DeFusion
✨✨✨参考资料
✨✨✨强烈推荐必看博客[图像融合论文baseline及其网络模型]✨✨✨
🔬实验结果
更多实验结果及分析可以查看原文:
🚀传送门
📑图像融合相关论文阅读笔记
📑[Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion models]
📑[LRRNet: A Novel Representation Learning Guided Fusion Network for Infrared and Visible Images]
📑[(DeFusion)Fusion from decomposition: A self-supervised decomposition approach for image fusion]
📑[ReCoNet: Recurrent Correction Network for Fast and Efficient Multi-modality Image Fusion]
📑[RFN-Nest: An end-to-end resid- ual fusion network for infrared and visible images]
📑[SwinFuse: A Residual Swin Transformer Fusion Network for Infrared and Visible Images]
📑[SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer]
📑[DenseFuse: A fusion approach to infrared and visible images]
📑[DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair]
📑[GANMcC: A Generative Adversarial Network With Multiclassification Constraints for IVIF]
📑[DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion]
📑[IFCNN: A general image fusion framework based on convolutional neural network]
📑[SDNet: A Versatile Squeeze-and-Decomposition Network for Real-Time Image Fusion]
📑[FusionGAN: A generative adversarial network for infrared and visible image fusion]
📑[PIAFusion: A progressive infrared and visible image fusion network based on illumination aw]
📑[CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion]
📑[U2Fusion: A Unified Unsupervised Image Fusion Network]
📑综述[Visible and Infrared Image Fusion Using Deep Learning]
📚图像融合论文baseline总结
📑其他论文
📑[3D目标检测综述:Multi-Modal 3D Object Detection in Autonomous Driving:A Survey]
🎈其他总结
🎈[CVPR2023、ICCV2023论文题目汇总及词频统计]
✨精品文章总结
如有疑问可联系:420269520@qq.com;
码字不易,【关注,收藏,点赞】一键三连是我持续更新的动力,祝各位早发paper,顺利毕业~