提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
一、损失函数
- 损失函数:就是在中学我们学到的回归问题中 y 真 − y 测的绝对值 y真 - y测的绝对值 y真−y测的绝对值
- 损失函数loss一定是越小越好,也就是预测的数据越接近真实值越好
- 在下面代码里就是 ∣ y − x ∣ / l e n ( x ) |y - x| / len(x) ∣y−x∣/len(x)
python
import torch
from torch.nn import L1Loss
#创建一个数据x
inputs = torch.tensor([1,2,3],dtype=torch.float32)
# 创建一个目标y
targets = torch.tensor([1,2,5],dtype=torch.float32)
# 创建一个损失函数
loss = L1Loss()
# 计算损失
result = loss(inputs,targets)
print(result)
'''
tensor(0.6667)
'''
二、反向传播
- forward:前向传播
- backward:反向传播(代码第四十一行)
反向传播就是为更新输出提供一定的依据。
python
import torch
from torch import nn
import torchvision
from torch.utils.data import DataLoader
# 下载数据集
dataset = torchvision.datasets.CIFAR10(root='./dataset/CIFAR10',transform=torchvision.transforms.ToTensor(),download=True)
# 加载数据集
dataloader = DataLoader(dataset,batch_size=1)
# 构建网络
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self,x):
x = self.model1(x)
return x
# 实例化网络
model = Model()
# 创建损失函数
loss = nn.CrossEntropyLoss()
# 读取数据
for data in dataloader:
imgs,targets = data
# 使用网络
output = model(imgs)
# 计算损失
result_loss = loss(output,targets)
# print(result_loss)
# 进行反向传播(也就是梯度从未到有)
result_loss.backward()
三、优化器
- 也可以说是梯度下降的,将得到的反向传播的数据进行更新优化,使损失函数逐渐减小来提高模型准确率。
- 例如:optim = torch.optim.SGD(model.parameters(),lr=0.01) 随机梯度下降
- 每种优化器前面两个参数几乎都一样,第一个参数放自己模型的训练参数,第二个参数是学习率,学习率不能太大会造成模型的不稳定,也不能太小会降低模型的运行速度。
python
import torch
from torch import nn
import torchvision
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10(root='./dataset/CIFAR10',train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=64)
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self,x):
x = self.model1(x)
return x
model = Model()
# 创建优化器
optim = torch.optim.SGD(model.parameters(),lr=0.01)
# 创建损失函数
loss = nn.CrossEntropyLoss()
# 迭代次数
for epoch in range(20):
# 总损失
running_loss = 0.0
for data in dataloader:
imgs,targets = data
output = model(imgs)
result_loss = loss(output,targets)
optim.zero_grad()
# 进行反向传播
result_loss.backward()
# 进行优化梯度随机下降
optim.step()
running_loss = running_loss + result_loss
print(running_loss)
'''
tensor(360.6862, grad_fn=<AddBackward0>)
tensor(357.4413, grad_fn=<AddBackward0>)
tensor(344.1332, grad_fn=<AddBackward0>)
tensor(323.9127, grad_fn=<AddBackward0>)
tensor(315.2773, grad_fn=<AddBackward0>)
tensor(307.1144, grad_fn=<AddBackward0>)
tensor(297.0642, grad_fn=<AddBackward0>)
'''