随机森林Random Forest(RF)回归预测-MATLAB代码实现

一、随机森林RF**(代码获取:底部公众号)**

随机森林(Random Forest,RF)是一种机器学习方法,常用于回归预测和分类任务。它通过构建多个决策树,并通过组合它们的预测结果来进行回归预测。下面是使用随机森林进行回归预测的一般步骤:

  1. 数据准备:准备用于回归预测的训练集和测试集数据。确保数据已经进行预处理,例如归一化或标准化。

  2. 构建随机森林:使用训练集数据构建随机森林模型。随机森林由多个决策树组成,每个决策树都是基于随机选择的样本和特征构建的。

  3. 特征选择:在每个决策树的节点分裂时,随机森林会从一个随机子集中选择特征。这有助于减少特征之间的相关性,并提高模型的泛化能力。

  4. 训练决策树:对于每个决策树,使用随机选择的样本和特征进行训练。决策树的训练过程通常使用递归分裂算法,根据特征的不纯度进行分裂。

  5. 预测:使用训练好的随机森林对测试集进行预测。对于回归预测,随机森林会将多个决策树的预测结果进行平均或加权平均,得到最终的预测值

  6. 评估模型:使用适当的评估指标(例如均方根误差)评估模型在测试集上的性能。这将帮助你了解模型的预测准确度。

  7. 调整和改进:根据评估结果,你可以调整随机森林的超参数,如决策树数量、最大深度等,以改进模型的性能。

随机森林具有良好的鲁棒性和泛化能力,并且能够处理高维数据和特征之间的复杂关系。它也可以用于特征重要性的评估,以帮助识别对回归预测具有重要影响的特征。

二、MATLAB仿真结果

(1)决策树数量特征重要性分析

(2)预测结果

(3)误差指标

(4)回归图

(5)误差直方图

三、关键代码展示(代码获取:下方公众号)

Matlab 复制代码
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

%%  转置
p_train = p_train'; 
p_test = p_test';
t_train = t_train'; 

%%  训练模型
trees = 100;                                      % 决策树数目
leaf  = 5;                                        % 最小叶子数
OOBPrediction = 'on';                             % 打开误差图
OOBPredictorImportance = 'on';                    % 计算特征重要性
Method = 'regression';                            % 分类还是回归
net = TreeBagger(trees, p_train, t_train, 'OOBPredictorImportance', OOBPredictorImportance,...
      'Method', Method, 'OOBPrediction', OOBPrediction, 'minleaf', leaf);
importance = net.OOBPermutedPredictorDeltaError;  % 重要性
相关推荐
___Dream8 分钟前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
顶呱呱程序38 分钟前
2-143 基于matlab-GUI的脉冲响应不变法实现音频滤波功能
算法·matlab·音视频·matlab-gui·音频滤波·脉冲响应不变法
西柚小萌新2 小时前
8.机器学习--决策树
人工智能·决策树·机器学习
简简单单做算法3 小时前
基于Retinex算法的图像去雾matlab仿真
算法·matlab·图像去雾·retinex
985小水博一枚呀3 小时前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
985小水博一枚呀3 小时前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路4 小时前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
阡之尘埃10 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力12 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
其实吧313 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab