C#Halcon深度学习预热与否的运行时间测试

在深度学习推理应用阶段,涉及到提速,绕不开一个关键词"预热"。

在其他地方的"预热",预先加热到指定的温度。通常指预习准备做某一样事时,为此做好准备。

而在深度学习推理应用阶段涉及的预热通常是指GPU预热,GPU在不用的时候是低功耗状态,它会把有些高性能的功能暂时关闭或降低性能,这时候如果把模型放上面处理,能明显感觉到有点慢,甚至从点击程序运行以后要等个几秒钟才出结果,因为这个阶段GPU要完成很多初始化工作【当然了,这也和显卡好坏有关系】。

接下来的Demo案例主要是呈现预热与否的运行时间差异

首先呈现的是未经预热的第一次测试

未经预热的第二次测试

未经预热的第三次测试

预热后第一次应用

预热后第二次应用

预热后第N次应用

Demo案例预热方式仅采用部分内存释放与否的方式进行测试,仅为展示效果

附上C#UI代码

复制代码
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using ViewControl;
using HalconDotNet;
using System.Reflection.Emit;
using static System.Net.Mime.MediaTypeNames;
namespace DeepLearningTest1
{
    public partial class Form1 : Form
    {
        HalconView HW; //dll调用
        public static DeepLearning Dl = new DeepLearning();//类调用
        //全局变量
        HObject HIMage = new HObject();
        HTuple hv_DLDataset = new HTuple(), hv_DLPreprocessParam = new HTuple();
        HTuple hv_DLModelHandle = new HTuple(), hv_ImageFiles = new HTuple();
        public Form1()
        {
            InitializeComponent();
            HW = new HalconView();
            HW.HWindowControl.BackColor = Color.White;
            splitContainer1.Panel1.Controls.Add(HW);
            HW.Dock = DockStyle.Fill;
        }
        /// <summary>
        /// 加载图片
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button1_Click(object sender, EventArgs e)
        {
            try
            {
                OpenFileDialog openFileDialog = new OpenFileDialog();
                //openFileDialog.InitialDirectory = AppDomain.CurrentDomain.BaseDirectory;
                openFileDialog.Filter = "图片文件(*.bmp;*.jpg;*.gif;*.png;*.tiff;*.tif)|*.bmp;*.jpg;*.gif;*.png;*.tiff;*.tif";
                openFileDialog.RestoreDirectory = true;
                openFileDialog.FilterIndex = 1;
                if (openFileDialog.ShowDialog() == DialogResult.OK)
                {
                    label3.Text = openFileDialog.FileName;
                    HOperatorSet.ReadImage(out HIMage, label3.Text);
                    
                    HW.DispImage(HIMage, true);
                }               
            }
            catch (Exception ex)
            {
                MessageBox.Show("加载图片失败  " + ex.ToString());
            }

        }
        /// <summary>
        /// 模型预热
        /// </summary>
        Detect detectResult = new Detect();
        private Detect detectTest(HObject Hobj, string mode)
        {
            detectResult = new Detect();
            HObject ho_Image = new HObject(); ;
            HTuple hv_WindowDict = new HTuple(), hv_Index = new HTuple();
            HTuple hv_SampleIndex = new HTuple(), hv_DLSampleBatch = new HTuple();
            HTuple hv_DLResult = new HTuple(), hv_ClaID = new HTuple();
            HTuple hv_ClassSorce = new HTuple(), hv_ClassName = new HTuple();
            HTuple hv_ID = new HTuple(), hv_Sorce = new HTuple(), hv_N = new HTuple();
            HOperatorSet.GenEmptyObj(out ho_Image);
            try
            {
                HTuple t = new HTuple(), t1 = new HTuple(), T = new HTuple();
                hv_DLDataset.Dispose();
                HOperatorSet.ReadDict("E:/Halcon数据/测量程序/深度学习/1109/xin1109.hdict",
                    new HTuple(), new HTuple(), out hv_DLDataset);
                hv_DLPreprocessParam.Dispose();
                HOperatorSet.ReadDict("E:/Halcon数据/测量程序/深度学习/xin110900/训练-241109-153815/dl_preprocess_param.hdict",
                    new HTuple(), new HTuple(), out hv_DLPreprocessParam);
                hv_DLModelHandle.Dispose();
                HOperatorSet.ReadDlModel("E:/Halcon数据/测量程序/深度学习/xin110900/训练-241109-153815/best_model.hdl",
                    out hv_DLModelHandle);
                ho_Image.Dispose();
                ho_Image = Hobj;
                HW.DispImage(ho_Image, true);
                hv_DLSampleBatch.Dispose();
                Dl.gen_dl_samples_from_images(ho_Image, out hv_DLSampleBatch);
                Dl.preprocess_dl_samples(hv_DLSampleBatch, hv_DLPreprocessParam);
                HOperatorSet.CountSeconds(out t);
                hv_DLResult.Dispose();
                HOperatorSet.ApplyDlModel(hv_DLModelHandle, hv_DLSampleBatch, new HTuple(),
                    out hv_DLResult);
                HOperatorSet.CountSeconds(out t1);
                T = t1 - t;
                label11.Text = T.ToString();
                hv_ClaID.Dispose();
                HOperatorSet.GetDictTuple(hv_DLResult, "classification_class_ids", out hv_ClaID);
                hv_ClassSorce.Dispose();
                HOperatorSet.GetDictTuple(hv_DLResult, "classification_confidences", out hv_ClassSorce);
                hv_ClassName.Dispose();
                HOperatorSet.GetDictTuple(hv_DLResult, "classification_class_names", out hv_ClassName);
                hv_ID.Dispose();
                using (HDevDisposeHelper dh = new HDevDisposeHelper())
                {
                    hv_ID = hv_ClaID.TupleSelect(
                        0);
                }
                hv_Sorce.Dispose();
                using (HDevDisposeHelper dh = new HDevDisposeHelper())
                {
                    hv_Sorce = hv_ClassSorce.TupleSelect(
                        0);
                }
                label1.Text = hv_Sorce.ToString();
                hv_N.Dispose();
                using (HDevDisposeHelper dh = new HDevDisposeHelper())
                {
                    hv_N = hv_ClassName.TupleSelect(
                    0);
                }
                label2.Text = hv_N.ToString();
            }
            catch
            {
                detectResult = new Detect();
                detectResult.finishJudge_CCD2 = false;
            }
            ho_Image.Dispose();
            hv_WindowDict.Dispose();
            hv_Index.Dispose();
            hv_SampleIndex.Dispose();
            hv_DLSampleBatch.Dispose();
            hv_DLResult.Dispose();
            hv_ClaID.Dispose();
            hv_ClassSorce.Dispose();
            hv_ClassName.Dispose();
            hv_ID.Dispose();
            hv_Sorce.Dispose();
            hv_N.Dispose();
            return detectResult;
        }
        /// <summary>
        /// 图片检测
        /// </summary>
        /// <param name="Hobj"></param>
        /// <param name="mode"></param>
        /// <returns></returns>
        private Detect detectTest1(HObject Hobj, string mode)
        {
            detectResult = new Detect();
            HObject ho_Image = new HObject(); ;
            HTuple hv_WindowDict = new HTuple(), hv_Index = new HTuple();
            HTuple hv_SampleIndex = new HTuple(), hv_DLSampleBatch = new HTuple();
            HTuple hv_DLResult = new HTuple(), hv_ClaID = new HTuple();
            HTuple hv_ClassSorce = new HTuple(), hv_ClassName = new HTuple();
            HTuple hv_ID = new HTuple(), hv_Sorce = new HTuple(), hv_N = new HTuple();
            HOperatorSet.GenEmptyObj(out ho_Image);
            try
            {
                HTuple t = new HTuple(), t1 = new HTuple(), T = new HTuple();
                ho_Image.Dispose();
                ho_Image = Hobj;
                HW.DispImage(ho_Image, true);
                hv_DLSampleBatch.Dispose();
                Dl.gen_dl_samples_from_images(ho_Image, out hv_DLSampleBatch);
                Dl.preprocess_dl_samples(hv_DLSampleBatch, hv_DLPreprocessParam);
                HOperatorSet.CountSeconds(out t);
                hv_DLResult.Dispose();
                HOperatorSet.ApplyDlModel(hv_DLModelHandle, hv_DLSampleBatch, new HTuple(),
                    out hv_DLResult);
                HOperatorSet.CountSeconds(out t1);
                T = t1 - t;
                label13.Text = T.ToString();
                hv_ClaID.Dispose();
                HOperatorSet.GetDictTuple(hv_DLResult, "classification_class_ids", out hv_ClaID);
                hv_ClassSorce.Dispose();
                HOperatorSet.GetDictTuple(hv_DLResult, "classification_confidences", out hv_ClassSorce);
                hv_ClassName.Dispose();
                HOperatorSet.GetDictTuple(hv_DLResult, "classification_class_names", out hv_ClassName);
                hv_ID.Dispose();
                using (HDevDisposeHelper dh = new HDevDisposeHelper())
                {
                    hv_ID = hv_ClaID.TupleSelect(
                        0);
                }
                hv_Sorce.Dispose();
                using (HDevDisposeHelper dh = new HDevDisposeHelper())
                {
                    hv_Sorce = hv_ClassSorce.TupleSelect(
                        0);
                }
                label21.Text = hv_Sorce.ToString();
                hv_N.Dispose();
                using (HDevDisposeHelper dh = new HDevDisposeHelper())
                {
                    hv_N = hv_ClassName.TupleSelect(
                    0);
                }

                label20.Text = hv_N.ToString();
            }
            catch
            {
                detectResult = new Detect();
                detectResult.finishJudge_CCD2 = false;
            }
            ho_Image.Dispose();
            hv_WindowDict.Dispose();
            hv_Index.Dispose();
            hv_SampleIndex.Dispose();
            hv_DLSampleBatch.Dispose();
            hv_DLResult.Dispose();
            hv_ClaID.Dispose();
            hv_ClassSorce.Dispose();
            hv_ClassName.Dispose();
            hv_ID.Dispose();
            hv_Sorce.Dispose();
            hv_N.Dispose();
            return detectResult;
        }
        /// <summary>
        /// 模型预热
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button3_Click(object sender, EventArgs e)
        {
            if (!HIMage.IsInitialized()) { MessageBox.Show("图片为空"); return; }
            Detect detectTemp = new Detect();
            HTuple t = new HTuple(), t1 = new HTuple(), T = new HTuple();
            HOperatorSet.CountSeconds(out t);
            detectTemp = detectTest(HIMage, "test");
            HOperatorSet.CountSeconds(out t1);
            T = t1 - t;
            label7.Text = T.ToString();
        }
        /// <summary>
        /// 图片检测
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button2_Click(object sender, EventArgs e)
        {
            if (!HIMage.IsInitialized()) { MessageBox.Show("图片为空"); return; }
            Detect detectTemp = new Detect();
            HTuple t = new HTuple(), t1 = new HTuple(), T = new HTuple();
            HOperatorSet.CountSeconds(out t);
            detectTemp = detectTest1(HIMage, "test");
            HOperatorSet.CountSeconds(out t1);
            T = t1 - t;
            label17.Text = T.ToString();
        }
    }
}
相关推荐
yhdata7 分钟前
2026年镍合金线行业产业链分析报告
大数据·人工智能
jiguanghover11 分钟前
Langgraph_通过playwright mcp执行自动化
人工智能·agent
清 澜13 分钟前
大模型扫盲式面试知识复习 (二)
人工智能·面试·职场和发展·大模型
kevin 115 分钟前
财务审核场景全覆盖,AI智能审核,自然语言配置规则
人工智能
jieshenai17 分钟前
BERT_Experiment_Template 多种模型与数据集加载,训练、参数保存与评估,适合论文实验的代码模板项目
人工智能·深度学习·bert
蝎蟹居30 分钟前
GBT 4706.1-2024逐句解读系列(25) 第7.5条款:不同电压功率需清晰明确
人工智能·单片机·嵌入式硬件·物联网·安全
Mintopia31 分钟前
😎 HTTP/2 中的 HPACK 压缩原理全揭秘
前端·人工智能·aigc
阿里云大数据AI技术36 分钟前
EMR AI 助手再升级:支持 Serverless StarRocks
人工智能
bing.shao38 分钟前
golang 做AI任务链的优势和场景
开发语言·人工智能·golang
知乎的哥廷根数学学派38 分钟前
基于多物理约束融合与故障特征频率建模的滚动轴承智能退化趋势分析(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习