MATLAB实现神经网络的OCR识别

使用说明:

  1. 运行要求‌:

    • MATLAB R2020b 或更新版本
    • 已安装 Deep Learning Toolbox
    • 推荐使用GPU加速(训练时在代码开头添加 gpuDevice(1)
  2. 代码特点‌:

    • 使用MATLAB自带的MNIST手写数字数据集
    • 包含数据可视化、网络架构、训练曲线和混淆矩阵
    • 最终测试准确率可达约98%
    • 包含单张图片预测演示
Matlab 复制代码
%% 神经网络OCR识别示例(MATLAB 2020b及以上版本)
% 需要安装 Deep Learning Toolbox

%% 步骤1:加载和预处理数据
clc; clear; close all

% 加载MATLAB自带的手写数字数据集
digitDatasetPath = fullfile(matlabroot, 'toolbox', 'nnet', 'nndemos', ...
    'nndatasets', 'DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders', true, 'LabelSource', 'foldernames');

% 显示部分样本
figure
numImages = 10000;
perm = randperm(numImages, 20);
for i = 1:20
    subplot(4,5,i);
    imshow(imds.Files{perm(i)});
end

% 分割数据集(70%训练,30%测试)
[imdsTrain, imdsTest] = splitEachLabel(imds, 0.7, 'randomized');

%% 步骤2:构建神经网络
inputSize = [28 28 1]; % 输入图像尺寸

layers = [
    imageInputLayer(inputSize, 'Name', 'input')   % 输入层
    
    convolution2dLayer(3, 16, 'Padding', 'same', 'Name', 'conv1') % 卷积层
    batchNormalizationLayer('Name', 'bn1')
    reluLayer('Name', 'relu1')
    
    maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1') % 池化层
    
    convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 'conv2')
    batchNormalizationLayer('Name', 'bn2')
    reluLayer('Name', 'relu2')
    
    fullyConnectedLayer(10, 'Name', 'fc')          % 全连接层
    softmaxLayer('Name', 'softmax')               % 分类层
    classificationLayer('Name', 'classification')];

%% 步骤3:设置训练参数
options = trainingOptions('adam', ...
    'InitialLearnRate', 0.001, ...
    'MaxEpochs', 10, ...
    'Shuffle', 'every-epoch', ...
    'ValidationData', imdsTest, ...
    'ValidationFrequency', 30, ...
    'Verbose', true, ...
    'Plots', 'training-progress');

%% 步骤4:调整图像大小并训练网络
augimdsTrain = augmentedImageDatastore(inputSize(1:2), imdsTrain);
augimdsTest = augmentedImageDatastore(inputSize(1:2), imdsTest);

net = trainNetwork(augimdsTrain, layers, options);

%% 步骤5:测试网络性能
[YPred, probs] = classify(net, augimdsTest);
accuracy = mean(YPred == imdsTest.Labels);
disp(['测试准确率: ', num2str(accuracy*100), '%'])

% 显示混淆矩阵
figure
confusionchart(imdsTest.Labels, YPred)

%% 步骤6:单张图片测试示例
% 随机选取测试集中的一个图像
testImage = readimage(imdsTest, randi(numel(imdsTest.Files)));

% 预处理并预测
inputImg = imresize(testImage, inputSize(1:2));
[result, scores] = classify(net, inputImg);

% 显示结果
figure
imshow(testImage)
title(['预测结果: ' char(result), '  真实标签: ' char(imdsTest.Labels(1))])
%% 神经网络OCR识别示例(MATLAB 2020b及以上版本)
% 需要安装 Deep Learning Toolbox

%% 步骤1:加载和预处理数据
clc; clear; close all

% 加载MATLAB自带的手写数字数据集
digitDatasetPath = fullfile(matlabroot, 'toolbox', 'nnet', 'nndemos', ...
    'nndatasets', 'DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders', true, 'LabelSource', 'foldernames');

% 显示部分样本
figure
numImages = 10000;
perm = randperm(numImages, 20);
for i = 1:20
    subplot(4,5,i);
    imshow(imds.Files{perm(i)});
end

% 分割数据集(70%训练,30%测试)
[imdsTrain, imdsTest] = splitEachLabel(imds, 0.7, 'randomized');

%% 步骤2:构建神经网络
inputSize = [28 28 1]; % 输入图像尺寸

layers = [
    imageInputLayer(inputSize, 'Name', 'input')   % 输入层
    
    convolution2dLayer(3, 16, 'Padding', 'same', 'Name', 'conv1') % 卷积层
    batchNormalizationLayer('Name', 'bn1')
    reluLayer('Name', 'relu1')
    
    maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool1') % 池化层
    
    convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 'conv2')
    batchNormalizationLayer('Name', 'bn2')
    reluLayer('Name', 'relu2')
    
    fullyConnectedLayer(10, 'Name', 'fc')          % 全连接层
    softmaxLayer('Name', 'softmax')               % 分类层
    classificationLayer('Name', 'classification')];

%% 步骤3:设置训练参数
options = trainingOptions('adam', ...
    'InitialLearnRate', 0.001, ...
    'MaxEpochs', 10, ...
    'Shuffle', 'every-epoch', ...
    'ValidationData', imdsTest, ...
    'ValidationFrequency', 30, ...
    'Verbose', true, ...
    'Plots', 'training-progress');

%% 步骤4:调整图像大小并训练网络
augimdsTrain = augmentedImageDatastore(inputSize(1:2), imdsTrain);
augimdsTest = augmentedImageDatastore(inputSize(1:2), imdsTest);

net = trainNetwork(augimdsTrain, layers, options);

%% 步骤5:测试网络性能
[YPred, probs] = classify(net, augimdsTest);
accuracy = mean(YPred == imdsTest.Labels);
disp(['测试准确率: ', num2str(accuracy*100), '%'])

% 显示混淆矩阵
figure
confusionchart(imdsTest.Labels, YPred)

%% 步骤6:单张图片测试示例
% 随机选取测试集中的一个图像
testImage = readimage(imdsTest, randi(numel(imdsTest.Files)));

% 预处理并预测
inputImg = imresize(testImage, inputSize(1:2));
[result, scores] = classify(net, inputImg);

% 显示结果
figure
imshow(testImage)
title(['预测结果: ' char(result), '  真实标签: ' char(imdsTest.Labels(1))])
相关推荐
不爱吃于先生1 小时前
生成对抗网络(Generative Adversarial Nets,GAN)
人工智能·神经网络·生成对抗网络
六边形战士DONK5 小时前
神经网络基础[损失函数,bp算法,梯度下降算法 ]
人工智能·神经网络·算法
每天都要写算法(努力版)6 小时前
【神经网络与深度学习】批标准化(Batch Normalization)和层标准化(Layer Normalization)
深度学习·神经网络·batch
MatpyMaster7 小时前
液体神经网络LNN-Attention创新结合——基于液体神经网络的时间序列预测(PyTorch框架)
人工智能·pytorch·神经网络·时间序列预测
可编程芯片开发8 小时前
基于阶梯式碳交易机制的电制氢综合能源系统热电优化matlab仿真
matlab·能源·阶梯式碳交易·电制氢·热电优化
蹦蹦跳跳真可爱58911 小时前
Python----卷积神经网络(卷积为什么能识别图像)
人工智能·python·深度学习·神经网络·计算机视觉·cnn
freexyn11 小时前
Matlab自学笔记五十二:变量名称:检查变量名称是否存在或是否与关键字冲突
人工智能·笔记·算法·matlab
我要学脑机12 小时前
基于常微分方程的神经网络(Neural ODE)
人工智能·深度学习·神经网络
XuX0312 小时前
MATLAB小试牛刀系列(1)
开发语言·matlab