计算机毕业设计python+spark知识图谱音乐推荐系统 音乐数据分析可视化大屏 音乐爬虫 LSTM情感分析 大数据毕设 深度学习 机器学习

流程:

1.Python采集网易云音乐歌手、歌词、音乐、评论等约10-20万+海量数据,存入mysql数据库;

2.使用pandas+numpy/MapReduce对mysql中四类数据进行数据清洗,写入.csv文件并上传至hdfs(含评论NLP文本分类/lsm情感分析);

3.使用hive建库建表,导入.csv数据集;

4.一半分析指标使用hive_sql完成,一半分析指标使用Spark之Scala语法完成;

5.将分析结果使用sqoop导入mysql数据库的指标表;

6.使用Flask+Echarts搭建可视化大屏界面;

创新点:

1.Python爬虫采集海量数据;

2.lstml情感分析/NLP文本分类;

3.spark实时分析+(hadoop、hive离线分析数据仓库)双实现,可实时可离线防止导师喷人;

4.可视化大屏炫酷显摆;

注意:如果还觉得本系统太简单太low工作量不够,可以选装推荐系统、知识图谱、预测系统、后台管理

核心算法代码分享如下:

java 复制代码
package com.bigdata.storm.kafka.util;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;

/**
 * @program: storm-kafka-api-demo
 * @description: redis工具类
 * @author: 小毕
 * @company: 清华大学深圳研究生院
 * @create: 2019-08-22 17:23
 */
public class JedisUtil {
    
    /*redis连接池*/
    private static JedisPool pool;
    
    /**
    *@Description: 返回redis连接池
    *@Param: 
    *@return: 
    *@Author: 小毕
    *@date: 2019/8/22 0022
    */
    public static JedisPool getPool(){
        if(pool==null){
            //创建jedis连接池配置
            JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
            //最大连接数
            jedisPoolConfig.setMaxTotal(20);
            //最大空闲连接
            jedisPoolConfig.setMaxIdle(5);
            pool=new JedisPool(jedisPoolConfig,"node03.hadoop.com",6379,3000);
        }
        return pool;
    }

    public static Jedis getConnection(){
        return getPool().getResource();
    }

/*    public static void main(String[] args) {
        //System.out.println(getPool());
        //System.out.println(getConnection().set("hello","world"));
    }*/






    
    
}
相关推荐
殇者知忧1 小时前
【论文笔记】若干矿井粉尘检测算法概述
深度学习·神经网络·算法·随机森林·机器学习·支持向量机·计算机视觉
YunTM2 小时前
贝叶斯优化+LSTM+时序预测=Nature子刊!
人工智能·机器学习
qq_463944866 小时前
【Spark征服之路-2.2-安装部署Spark(二)】
大数据·分布式·spark
weixin_505154467 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
打码人的日常分享7 小时前
智慧城市建设方案
大数据·架构·智慧城市·制造
黑鹿0229 小时前
机器学习基础(四) 决策树
人工智能·决策树·机器学习
阿里云大数据AI技术9 小时前
ES Serverless 8.17王牌发布:向量检索「火力全开」,智能扩缩「秒级响应」!
大数据·运维·serverless
Mikhail_G10 小时前
Python应用变量与数据类型
大数据·运维·开发语言·python·数据分析
G皮T10 小时前
【Elasticsearch】映射:null_value 详解
大数据·elasticsearch·搜索引擎·映射·mappings·null_value
molunnnn10 小时前
day 18进行聚类,进而推断出每个簇的实际含义
机器学习·数据挖掘·聚类