【大语言模型】ACL2024论文-28 TTM-RE: 增强记忆的文档级关系抽取

【大语言模型】ACL2024论文-28 TTM-RE: 增强记忆的文档级关系抽取


目录

文章目录


文章信息

TTM-RE: 增强记忆的文档级关系抽取

摘要

本文提出了TTM-RE,一种新颖的方法,它通过集成可训练的记忆模块(Token Turing Machine)和鲁棒的损失函数来解决文档级关系抽取问题。这种方法特别针对大规模、噪声多的训练数据,通过实验表明,TTM-RE在ReDocRED基准数据集上实现了最先进的性能,绝对F1分数提高了超过3%。

研究背景

文档级关系抽取的目标是在文档中识别并分类两个实体之间的关系。以往的方法在利用大规模、不同噪声水平的训练数据方面效果不佳。例如,在ReDocRED基准数据集中,使用大规模、低质量的远程监督训练数据训练出的状态最先进的方法,通常并不比仅使用小型、高质量的人工标注训练数据训练出的方法表现得更好。

问题与挑战

文档级关系抽取面临的挑战包括标签不平衡、文档中可能的实体对组合数量呈二次方增长等。此外,如何有效利用大规模的远程标注数据也是一个挑战。

如何解决

TTM-RE通过引入Token Turing Machine(TTM)记忆模块和针对正-未标记设置的噪声鲁棒损失函数来解决上述问题。TTM能够存储和处理输入实体,输出记忆增强的实体表示,用于关系分类。

创新点

  1. 提出了TTM-RE,首个记忆增强的文档级关系抽取模型。
  2. 通过结合伪实体,显著提升了下游关系分类性能。
  3. 在极端未标记设置下,TTM-RE的性能超过了之前的最佳方法。

算法模型

TTM-RE的核心是Token Turing Machine(TTM),它包含一个可训练的记忆模块。记忆模块处理输入实体,并输出到关系分类器。模型还采用了噪声鲁棒损失函数(SSR-PU),适用于正-未标记学习设置。

实验效果

  • 在ReDocRED数据集上,TTM-RE实现了最先进的性能,F1分数提高了超过3%。
  • 在ChemDisGene数据集上,TTM-RE在生物医学领域也表现出色,F1分数提高了5%。
  • 在极端未标记设置下,TTM-RE的F1分数比之前的最佳方法提高了12%。

推荐阅读指数:★★★★☆


后记

如果您对我的博客内容感兴趣,欢迎三连击(点赞,关注和评论 ),我将持续为您带来计算机人工智能前沿技术(尤其是AI相关的大语言模型,深度学习,计算机视觉相关方向)最新学术论文及工程实践方面的内容分享,助力您更快更准更系统地了解 AI前沿技术

相关推荐
IT_陈寒18 小时前
5个Python 3.12新特性让你的代码效率提升50%,第3个太实用了!
前端·人工智能·后端
love is sour18 小时前
理解全连接层:深度学习中的基础构建块
人工智能·深度学习
周杰伦_Jay18 小时前
【Python后端API开发对比】FastAPI、主流框架Flask、Django REST Framework(DRF)及高性能框架Tornado
数据结构·人工智能·python·django·flask·fastapi·tornado
chenchihwen18 小时前
AI代码开发宝库系列:PDF文档解析MinerU
人工智能·python·pdf·dashscope
人工智能训练18 小时前
Ubuntu系统中Docker的常用命令总结
linux·运维·人工智能·ubuntu·docker·ai
深兰科技19 小时前
廊坊市市长刘媛率队到访深兰科技,推动机器人制造基地与产业投资落地
人工智能·科技·机器人·scala·symfony·深兰科技·廊坊市市长刘媛
沫儿笙19 小时前
发那科机器人在氩弧焊中搭配节气装置的优势
人工智能·机器人
m0_650108241 天前
【论文精读】CMD:迈向高效视频生成的新范式
人工智能·论文精读·视频扩散模型·高效生成·内容 - 运动分解·latent 空间
电鱼智能的电小鱼1 天前
基于电鱼 AI 工控机的智慧工地视频智能分析方案——边缘端AI检测,实现无人值守下的实时安全预警
网络·人工智能·嵌入式硬件·算法·安全·音视频
年年测试1 天前
AI驱动的测试:用Dify工作流实现智能缺陷分析与分类
人工智能·分类·数据挖掘