本文涉及知识点
[COCI2019-2020#5] Zapina
题目描述
有 n n n 个不同的 人和 n n n 道不同的题。
第 i i i 个人开心当且仅当他被分配到 i i i 道题,题号不限。
求让至少一个人开心的分配方案数。
输入格式
一个正整数: n n n。
输出格式
一个数字:你的答案 m o d 10 9 + 7 \bmod 10^9+7 mod109+7。
样例 #1
样例输入 #1
1
样例输出 #1
1
样例 #2
样例输入 #2
2
样例输出 #2
3
样例 #3
样例输入 #3
314
样例输出 #3
192940893
提示
数据范围
本题捆绑测试。
- 对于 22 p t s 22 pts 22pts 的数据, 2 ≤ n ≤ 7 2\leq n\leq 7 2≤n≤7。
- 对于另外 33 p t s 33 pts 33pts 的数据, 1 ≤ n ≤ 20 1\leq n\leq 20 1≤n≤20。
- 对于所有的数据, 1 ≤ n ≤ 350 1\leq n\leq 350 1≤n≤350。
样例#2解释
有以下 3 3 3 种方案:
-
第一题給第一个人,第二题給第二个人。第一个人开心。
-
第二题給第一个人,第一题給第二个人。第一个人开心。
-
两题都给第二个人。第二个人开心,期望分配两题,也分配到两题。
动态规划(无法通过)
动态规划之状态表示
dp[i][j][k]记录符合以下条件的方案数。前i个人物已经分配完题目,已经分配j题,有k个人开心。
空间复杂度:O(nnn),用滚动向量优化空间 pre = dp[i-1],cur= dp[i]。
动态规划之转移方程
枚举后置状态
dp[i][j][k] += ( ∑ p : 0 j d p [ i − 1 ] [ j − p ] [ k ] × C n − ( j − p ) p ) − d p [ i − 1 ] [ j − i ] [ k ] × C n − ( j − i ) i (\sum_{p:0}^{j}dp[i-1][j-p][k] \times C_{n-(j-p)}^{p})-dp[i-1][j-i][k]\times C_{n-(j-i)}^{i} (∑p:0jdp[i−1][j−p][k]×Cn−(j−p)p)−dp[i−1][j−i][k]×Cn−(j−i)i 第i个人不开心。第二项必须j >= i。由于表达式包括j,p,所以无法利用前缀和优化。
dp[i][j][k] += dp[i-1][j-i][k-1] 第i个人开心,注意 :i >= i 且k >0。
单个状态转移时间复杂度:O(1),总时间复杂度:O(nnn)
动态规划的填表顺序
i = 1 to N k =0 to N j =0 to N
动态规划的初始值
dp[0][0][0]=1,其它全为0。
动态规划的返回值
典型的容斥原理应用,预处理好cnt[i],然后代入公式。
cnt[i] = dp.back().back()[i]
动态规划二
动态规划状态表示
dp[i][j]记录所有人都不快乐的方案数:i表示前i个人都已经分配完题目,已经分配了j个题目。
空间复杂度:O(nn)
动态规划的转移方程
枚举前置状态
for p = 0 to n-j 且p ≠ \neq = i+1
dp[i+1][j+p] += dp[i][j] × C n − j p \times C_{n-j}^{p} ×Cn−jp
单个状态转移的时间复杂度O(n),总时间复杂度O(nnn)
动态规划的初始值
dp[0][0]=1,其它全为0。
动态规划的填表数学
i = 0 to n-1 j = 0 to N
动态规划的返回值
nn-dp.back() 总方案数减去所有人不快乐的方案数。
代码
核心代码
cpp
#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include <bitset>
using namespace std;
template<class T = int>
vector<T> Read(int n,const char* pFormat = "%d") {
vector<T> ret;
T d ;
while (n--) {
scanf(pFormat, &d);
ret.emplace_back(d);
}
return ret;
}
template<class T = int>
vector<T> Read( const char* pFormat = "%d") {
int n;
scanf("%d", &n);
vector<T> ret;
T d;
while (n--) {
scanf(pFormat, &d);
ret.emplace_back(d);
}
return ret;
}
string ReadChar(int n) {
string str;
char ch;
while (n--) {
do
{
scanf("%c", &ch);
} while (('\n' == ch));
str += ch;
}
return str;
}
template<int MOD = 1000000007>
class C1097Int
{
public:
C1097Int(long long llData = 0) :m_iData(llData% MOD)
{
}
C1097Int operator+(const C1097Int& o)const
{
return C1097Int(((long long)m_iData + o.m_iData) % MOD);
}
C1097Int& operator+=(const C1097Int& o)
{
m_iData = ((long long)m_iData + o.m_iData) % MOD;
return *this;
}
C1097Int& operator-=(const C1097Int& o)
{
m_iData = (m_iData + MOD - o.m_iData) % MOD;
return *this;
}
C1097Int operator-(const C1097Int& o)
{
return C1097Int((m_iData + MOD - o.m_iData) % MOD);
}
C1097Int operator*(const C1097Int& o)const
{
return((long long)m_iData * o.m_iData) % MOD;
}
C1097Int& operator*=(const C1097Int& o)
{
m_iData = ((long long)m_iData * o.m_iData) % MOD;
return *this;
}
C1097Int operator/(const C1097Int& o)const
{
return *this * o.PowNegative1();
}
C1097Int& operator/=(const C1097Int& o)
{
*this /= o.PowNegative1();
return *this;
}
bool operator==(const C1097Int& o)const
{
return m_iData == o.m_iData;
}
bool operator<(const C1097Int& o)const
{
return m_iData < o.m_iData;
}
C1097Int pow(long long n)const
{
C1097Int iRet = 1, iCur = *this;
while (n)
{
if (n & 1)
{
iRet *= iCur;
}
iCur *= iCur;
n >>= 1;
}
return iRet;
}
C1097Int PowNegative1()const
{
return pow(MOD - 2);
}
int ToInt()const
{
return (m_iData + MOD) % MOD;
}
private:
int m_iData = 0;;
};
template<class Result = C1097Int<> >
class CCombination
{
public:
CCombination()
{
m_v.assign(1, vector<Result>(1, 1));
}
Result Get(int sel, int total)
{
assert(sel <= total);
while (m_v.size() <= total)
{
int iSize = m_v.size();
m_v.emplace_back(iSize + 1, 1);
for (int i = 1; i < iSize; i++)
{
m_v[iSize][i] = m_v[iSize - 1][i] + m_v[iSize - 1][i - 1];
}
}
return m_v[total][sel];
}
protected:
vector<vector<Result>> m_v;
};
class Solution {
public:
int Ans(int N) {
vector<vector<C1097Int<>>> dp(N + 1, vector<C1097Int<>>(N + 1));
dp[0][0] = 1;
CCombination com;
for (int i = 0; i < N; i++) {
auto& pre = dp[i];
auto& cur = dp[i + 1];
for (int j = 0; j <= N; j++)
for (int p = 0; p <= N - j; p++) {
if (i + 1 == p) { continue; }
cur[j + p] += pre[j] * com.Get(p, N - j);
}
}
C1097Int<> ans = C1097Int<>(N).pow(N) - dp.back().back();
return ans.ToInt();
}
};
int main() {
#ifdef _DEBUG
freopen("a.in", "r", stdin);
#endif // DEBUG
int n;
scanf("%d", &n);
auto res = Solution().Ans(n);
cout << res << std::endl;
return 0;
}
单元测试
cpp
TEST_METHOD(TestMethod11)
{
auto res = Solution().Ans(1);
AssertEx(1, res);
}
TEST_METHOD(TestMethod12)
{
auto res = Solution().Ans(2);
AssertEx(3, res);
}
TEST_METHOD(TestMethod13)
{
auto res = Solution().Ans(314);
AssertEx(192940893, res);
}
TEST_METHOD(TestMethod14)
{
vector<int> ans = { 0,1,3,16,147,1756,25910,453594,9184091,211075288,427652759,380254172,88525330,594308696,594582617,496808516,230533631,930048563,734906046,145824550,963104287,792576272,20842121,926710860,624063170,435324673,941196758,100412345,829823320,16604011,119246612,467453588,296507940,19474275,437566401,580597104,325614134,114081039,16970316,54942632,953074343,664503025,963474561,463988230,901088598,552316694,370315853,363024430,361814615,987969955,356909604,72317551,362905861,844210242,74494960,267374090,9829229,80574666,190779497,993501688,667880842,25921000,891056540,820027654,988133379,860424629,164712123,638551214,64068242,852828384,594849040,713709588,713810843,796807000,639934368,445930895,853650080,686849288,687485088,204732826,938270531,233180167,680119887,798575300,221191668,719754542,183970632,65159363,102009420,106900582,603406815,547850988,69043888,441404069,178108361,171613595,194519530,846734478,733143650,732291535,534460323,424030598,293484626,18815201,585676643,912726223,510270289,151012819,929291571,529049185,117076206,900078971,614777735,348106199,423774249,574430766,526570315,748176803,31818969,501560666,705499512,806457493,862367692,255090341,812275285,136149440,140879753,956968322,984467061,121221372,826702704,995609955,640463338,795423206,438017231,104878010,715195281,87713761,472145514,512444087,528010597,448216404,715864432,365209471,998258892,47038284,945845611,742836670,874752539,351178973,115572999,85498210,750445820,566986136,507422951,263280651,363746668,721379342,657233523,368070024,365517137,557356212,405385770,702731018,726524565,582672271,713823066,172539263,452254713,108837529,685050929,112599223,950160771,537791717,196634339,765215429,723039551,992336331,495498388,734598160,166618212,690246061,613497507,91548173,34919956,30705717,150505766,252695495,997416620,426419436,299460599,841765395,170108584,130185332,573662799,620823933,366877355,870627156,903422770,826307196,361255220,710936088,447319974,885230522,664999650,227183665,35153803,597619983,251027027,953802478,83703267,961654121,351763496,571777475,19373724,564323159,525846126,988983101,113976315,976654852,957177092,547018849,207894228,385473127,401477473,894388178,414921794,285963181,179455247,584525294,721286723,628695619,608638999,599226595,806938357,465644549,296878851,573944747,201107705,585546352,487718852,205357994,277758478,969139685,461220859,461004882,132504633,615131412,824346063,924255686,759290174,358422542,635725603,176609609,917792915,257455569,746184536,316402317,783793186,500434871,517428456,451399654,409643100,482863842,176126614,820640574,657068590,362058002,242650619,186901373,515265982,89328722,942695111,540996271,90622012,138665430,818615553,784975850,417957865,721662199,737792977,495770091,951382091,316267089,374149589,284673490,916782568,790954001,602629711,531192034,664953974,624778690,283568537,34602368,376162450,10239950,812647987,99619518,509861236,256514260,341204270,899013232,614243782,535500022,518807185,472039848,306389369,965790287,155402774,825826404,381603778,307185930,856889200,248603369,192940893,25534731,193328908,438514397,782463496,892910780,686315937,919983254,111131855,299340566,255665989,470190823,983178320,961595576,279565492,63447508,69379637,540261561,887203349,350550553,701031556,754173085,251426123,533498405,443766626,741119012,897485842,708580238,529660266,493526336,813446619,453474512,927471565,937547684,981739148,653129658,688023819 };
for (int i = 0; i < min(200u,ans.size()); i++) {
auto res = Solution().Ans(i);
AssertEx(ans[i], res);
}
}
扩展阅读
| 我想对大家说的话 |
|---|
| 工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
| 学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作 |
| 有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
| 闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
| 子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
| 如果程序是一条龙,那算法就是他的是睛 |
| 失败+反思=成功 成功+反思=成功 |
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。