sklearn混淆矩阵的计算和seaborn可视化

为了计算语义分割的指标miou,需要生成的中间过程就是混淆矩阵。

iou = intersection / union

每个类别的平均iou就是mean iou。

使用sklearn自带的confusion_matrix能很容易生成混淆矩阵,可以进行混淆矩阵的可视化观察哪个类别分割的不好。

复制代码
from sklearn.metrics import confusion_matrix

# 定义总的混淆矩阵
matrix = np.zeros((self.n, self.n), dtype=np.int64)

# 每个batch的数据都按照一下的方法添加进混淆矩阵:
# pred:  NxC
# label: N

pred_l = pred.max(dim=1)[1]
matrix += confusion_matrix(label.int().cpu().numpy(), pred_l.cpu().numpy(), labels=range(13))

一定要设置 labels=range(13),否则labels不全可能生成不了完整尺寸的混淆矩阵。

可以使用seaborn进行可视化。

复制代码
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt


sns.heatmap(data=matrix / np.sum(matrix, axis=0, keepdims=True), 
            annot=True,
            fmt=".2f", 
            xticklabels=class_name,
            cmap='GnBu')
plt.xticks(rotation=45, ha='right')
plt.ylabel('Pred')
plt.xlabel('True')
plt.title('Confusion Matrix')

plt.tight_layout()

plt.savefig("confusion.png")

matrix按照列进行求和,这样能够按照label值归一化到1。

相关推荐
羑悻的小杀马特1 小时前
OpenCV 引擎:驱动实时应用开发的科技狂飙
人工智能·科技·opencv·计算机视觉
蹦蹦跳跳真可爱5892 小时前
Python----计算机视觉处理(Opencv:道路检测之提取车道线)
python·opencv·计算机视觉
guanshiyishi4 小时前
ABeam 德硕 | 中国汽车市场(2)——新能源车的崛起与中国汽车市场机遇与挑战
人工智能
极客天成ScaleFlash4 小时前
极客天成NVFile:无缓存直击存储性能天花板,重新定义AI时代并行存储新范式
人工智能·缓存
Uzuki4 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
澳鹏Appen5 小时前
AI安全:构建负责任且可靠的系统
人工智能·安全
蹦蹦跳跳真可爱5896 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
视界宝藏库6 小时前
多元 AI 配音软件,打造独特音频体验
人工智能
xinxiyinhe7 小时前
GitHub上英语学习工具的精选分类汇总
人工智能·deepseek·学习英语精选
byxdaz7 小时前
PyTorch中Linear全连接层
pytorch