sklearn混淆矩阵的计算和seaborn可视化

为了计算语义分割的指标miou,需要生成的中间过程就是混淆矩阵。

iou = intersection / union

每个类别的平均iou就是mean iou。

使用sklearn自带的confusion_matrix能很容易生成混淆矩阵,可以进行混淆矩阵的可视化观察哪个类别分割的不好。

复制代码
from sklearn.metrics import confusion_matrix

# 定义总的混淆矩阵
matrix = np.zeros((self.n, self.n), dtype=np.int64)

# 每个batch的数据都按照一下的方法添加进混淆矩阵:
# pred:  NxC
# label: N

pred_l = pred.max(dim=1)[1]
matrix += confusion_matrix(label.int().cpu().numpy(), pred_l.cpu().numpy(), labels=range(13))

一定要设置 labels=range(13),否则labels不全可能生成不了完整尺寸的混淆矩阵。

可以使用seaborn进行可视化。

复制代码
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt


sns.heatmap(data=matrix / np.sum(matrix, axis=0, keepdims=True), 
            annot=True,
            fmt=".2f", 
            xticklabels=class_name,
            cmap='GnBu')
plt.xticks(rotation=45, ha='right')
plt.ylabel('Pred')
plt.xlabel('True')
plt.title('Confusion Matrix')

plt.tight_layout()

plt.savefig("confusion.png")

matrix按照列进行求和,这样能够按照label值归一化到1。

相关推荐
SY师弟10 分钟前
51单片机基础部分——矩阵按键检测
嵌入式硬件·矩阵·51单片机
workflower14 分钟前
以光量子为例,详解量子获取方式
数据仓库·人工智能·软件工程·需求分析·量子计算·软件需求
壹氿18 分钟前
Supersonic 新一代AI数据分析平台
人工智能·数据挖掘·数据分析
柠石榴21 分钟前
【论文阅读笔记】《A survey on deep learning approaches for text-to-SQL》
论文阅读·笔记·深度学习·nlp·text-to-sql
张较瘦_25 分钟前
[论文阅读] 人工智能 | 搜索增强LLMs的用户偏好与性能分析
论文阅读·人工智能
我不是小upper36 分钟前
SVM超详细原理总结
人工智能·机器学习·支持向量机
Yxh1813778455442 分钟前
抖去推--短视频矩阵系统源码开发
人工智能·python·矩阵
取酒鱼食--【余九】1 小时前
rl_sar实现sim2real的整体思路
人工智能·笔记·算法·rl_sar
一勺汤1 小时前
YOLO12 改进|融入 Mamba 架构:插入视觉状态空间模块 VSS Block 的硬核升级
yolo·计算机视觉·mamba·yolov12·yolo12·yolo12该机·yolo12 mamba