sklearn混淆矩阵的计算和seaborn可视化

为了计算语义分割的指标miou,需要生成的中间过程就是混淆矩阵。

iou = intersection / union

每个类别的平均iou就是mean iou。

使用sklearn自带的confusion_matrix能很容易生成混淆矩阵,可以进行混淆矩阵的可视化观察哪个类别分割的不好。

复制代码
from sklearn.metrics import confusion_matrix

# 定义总的混淆矩阵
matrix = np.zeros((self.n, self.n), dtype=np.int64)

# 每个batch的数据都按照一下的方法添加进混淆矩阵:
# pred:  NxC
# label: N

pred_l = pred.max(dim=1)[1]
matrix += confusion_matrix(label.int().cpu().numpy(), pred_l.cpu().numpy(), labels=range(13))

一定要设置 labels=range(13),否则labels不全可能生成不了完整尺寸的混淆矩阵。

可以使用seaborn进行可视化。

复制代码
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt


sns.heatmap(data=matrix / np.sum(matrix, axis=0, keepdims=True), 
            annot=True,
            fmt=".2f", 
            xticklabels=class_name,
            cmap='GnBu')
plt.xticks(rotation=45, ha='right')
plt.ylabel('Pred')
plt.xlabel('True')
plt.title('Confusion Matrix')

plt.tight_layout()

plt.savefig("confusion.png")

matrix按照列进行求和,这样能够按照label值归一化到1。

相关推荐
aircrushin6 小时前
三分钟说清楚 ReAct Agent 的技术实现
人工智能
WangYaolove13147 小时前
基于深度学习的中文情感分析系统(源码+文档)
python·深度学习·django·毕业设计·源码
技术狂人1687 小时前
工业大模型工程化部署实战!4 卡 L40S 高可用集群(动态资源调度 + 监控告警 + 国产化适配)
人工智能·算法·面试·职场和发展·vllm
软件算法开发7 小时前
基于改进麻雀优化的LSTM深度学习网络模型(ASFSSA-LSTM)的一维时间序列预测算法matlab仿真
深度学习·matlab·lstm·一维时间序列预测·改进麻雀优化·asfssa-lstm
好奇龙猫7 小时前
【人工智能学习-AI入试相关题目练习-第三次】
人工智能
柳杉8 小时前
建议收藏 | 2026年AI工具封神榜:从Sora到混元3D,生产力彻底爆发
前端·人工智能·后端
狮子座明仔8 小时前
Engram:DeepSeek提出条件记忆模块,“查算分离“架构开启LLM稀疏性新维度
人工智能·深度学习·语言模型·自然语言处理·架构·记忆
阿湯哥8 小时前
AgentScope Java 集成 Spring AI Alibaba Workflow 完整指南
java·人工智能·spring
Java中文社群9 小时前
保姆级喂饭教程:什么是Skills?如何用Skills?
人工智能