sklearn混淆矩阵的计算和seaborn可视化

为了计算语义分割的指标miou,需要生成的中间过程就是混淆矩阵。

iou = intersection / union

每个类别的平均iou就是mean iou。

使用sklearn自带的confusion_matrix能很容易生成混淆矩阵,可以进行混淆矩阵的可视化观察哪个类别分割的不好。

复制代码
from sklearn.metrics import confusion_matrix

# 定义总的混淆矩阵
matrix = np.zeros((self.n, self.n), dtype=np.int64)

# 每个batch的数据都按照一下的方法添加进混淆矩阵:
# pred:  NxC
# label: N

pred_l = pred.max(dim=1)[1]
matrix += confusion_matrix(label.int().cpu().numpy(), pred_l.cpu().numpy(), labels=range(13))

一定要设置 labels=range(13),否则labels不全可能生成不了完整尺寸的混淆矩阵。

可以使用seaborn进行可视化。

复制代码
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt


sns.heatmap(data=matrix / np.sum(matrix, axis=0, keepdims=True), 
            annot=True,
            fmt=".2f", 
            xticklabels=class_name,
            cmap='GnBu')
plt.xticks(rotation=45, ha='right')
plt.ylabel('Pred')
plt.xlabel('True')
plt.title('Confusion Matrix')

plt.tight_layout()

plt.savefig("confusion.png")

matrix按照列进行求和,这样能够按照label值归一化到1。

相关推荐
Niuguangshuo4 分钟前
Pytorch 张量操作
pytorch·张量
suke6 分钟前
一文秒懂AI核心:Agent、RAG、Function Call与MCP全解析
人工智能·程序员
大霸王龙8 分钟前
LLM(语言学习模型)行为控制技术
python·深度学习·学习
oil欧哟10 分钟前
😎 MCP 从开发到发布全流程介绍,看完不踩坑!
人工智能·typescript·node.js
Code_流苏41 分钟前
AI知识补全(十四):零样本学习与少样本学习是什么?
人工智能·元学习·少样本学习·零样本学习·语义嵌入
Yvette-W44 分钟前
ChatGPT 迎来 4o模型:更强大的图像生成能力与潜在风险
人工智能·chatgpt
Shockang44 分钟前
机器学习的一百个概念(5)数据增强
人工智能·机器学习
洁洁!1 小时前
数据采集助力AI大模型训练
前端·人工智能·easyui
平平无奇科研小天才1 小时前
scGPT环境安装
人工智能